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Abstract

Nonlinear thermoelastic—viscoplastic constitutive equations for large deformations with isotropic and directional
hardening, are incorporated into a micromechanical finite strain analysis. As a result of this analysis, which is based on
the homogenization technique for periodic microstructures, a global thermoinelastic constitutive law is established that
governs the overall response of multiphase materials under finite deformations. This constitutive law is expressed in
terms of the instantaneous effective mechanical and thermal stress tangent tensors together with the instantaneous
global inelastic stress tensor that represents the viscoplastic effects. Results for a thermoinelastic matrix reinforced by a
hyperelastic compressible material are given that illustrate the response of fibrous and particulate composites to various
types of loading.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

There are many investigations concerning the behavior of metal matrix composites whose response is
predicted by a suitable micromechanical theory. The behavior of the inelastic matrix is represented either by
the classical theory of plasticity or by an elastic—viscoplastic representation. As an example of such an
approach is an investigation which deals with a metallic matrix reinforced by discontinuous fibers that has
been recently presented by Pahr and Arnold (2002). All these investigations have been confined to infini-
tesimal deformations. Investigations that deal with finite deformations are very few. This is because an
appropriate micro/meso constitutive model that is capable of representing the finite deformation of both
the monolithic inelastic phase and, in addition, a generalization of the micromechanical analysis to ac-
commodate large deformation are necessary.

Let us first discuss some constitutive models for the representation of the response of finite elastic—
viscoplastic monolithic materials. The formulation of the theory of plasticity with large deformation
has been presented by Lubliner (1990) where related references are given. In their discussion of the
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computational aspects of finite deformation of plasticity and viscoplasticity, Simo and Ortiz (1985) con-
sidered the multiplicative decomposition of the deformation gradient, the additive decomposition of the
Lagrangian strain and the additive decomposition of the rate of deformation tensor. These three alter-
natives form central ingredients in the development of inelastic finite deformation constitutive equations.
Rubin (1987) presented an elastic—viscoplastic model with isotropic and directional hardening (that ac-
counts for the Bauschinger effect), by extending the Bodner—Partom unified viscoplasticity theory (Bodner,
2002) to large deformations. His approach is based on the general formulation of Green and Naghdi (1977,
1978) in the strain space. In this formulation the Helmholtz free energy depends on four scalar invariants:
two scalars which are pure measures of elastic distortional deformation, a measure of total dilatation, and
temperature. The primary variables are the right Cauchy—Green deformation tensor and its plastic analog.
The finite deformation of the material is characterized by the same set of material parameters that appear in
the infinitesimal deformation theory and thus no additional material constants are needed. Furthermore,
since the stress is not characterized by hypoelastic equations, no special invariant rates of stress (like the
Jaumann) need to be introduced. Finally, Rubin’s model allows a transition from elastic-viscoplastic solid
to a fluid state. A formulation in the current configuration has been presented by Nishiguchi et al. (1988).
Here an additive decomposition of the rate of deformation tensor into elastic and inelastic parts has been
assumed. The elastic part is given in terms of a hypoelastic constitutive law, while the inelastic part is
formulated in terms of an objective stress rate. More recently, Sansour and Kollmann (1997) introduced a
finite elastic—viscoplastic theory based on the unified viscoplasticity theory of Bodner and Partom for in-
finitesimal strains. In the framework of this theory a multiplicative decomposition of the deformation
gradient into elastic and inelastic parts is introduced. The elastic part is formulated as a hyperelastic
material in terms of logarithmic strains, and for the inelastic part, an evolution equation is presented. A
discussion of the computational issues of finite elastoplasticity theory based on logarithmic strains has been
presented by Peric et al. (1992) where an extensive list of references can be found. A formulation of hy-
perelastic-based elastoplastic constitutive equations for finite deformation using a logarithmic stress and
strain measures have been presented by Eterovic and Bathe (1990). Finite deformation constitutive
equations for elastic—viscoplastic solids have been presented by Weber and Anand (1990), where the
multiplicative decomposition of the deformation gradient, has been employed to represent the material in
the elastic region as a hyperelastic solid, in conjunction with a logarithmic elastic strain measure. For the
plastic deformation gradient an evolution equation is presented.

As to micromechanical models in which finite deformation elastic—viscoplastic constitutive laws have
been incorporated, we mention the paper by Aboudi (1986) who employed a micromechanical approach
based on few subcells with first-order representation of the displacement field. The infinitesimal Bodner—
Partom equations have been extended in a straightforward manner to large deformation by implementing
the additive decomposition of the rate of deformation tensor and the Jaumann’s rate of change of stress
tensor. A more recent investigation has been presented by Van der Sluis et al. (2001). In this investigation
the homogenization method has been employed to analyze a composite that consists of a polycarbonate
elastic—viscoplastic matrix reinforced by elastic particles. The finite elastic—viscoplastic matrix is modeled as
an hyperelastic material in the elastic region, whereas Perzyna’s viscoplasticity (Perzyna, 1966) is used to
characterize the inelastic part. The additive decomposition of the rate of deformation tensor is used in
conjunction with the objective Truesdell rate. The rubber inclusions are modeled by a hyperelastic com-
pressible neo-Hookean constitutive law. Finally, the finite element procedure is employed to solve the
governing equations.

For infinitesimal deformations, the homogenization method for periodic microstructures in conjunction
with an analytical method of solution, have been recently employed to investigate the response of ther-
moelastic (Aboudi et al., 2001), electro-magneto-thermo-elastic (Aboudi, 2001) and thermoinelastic
(Aboudi et al., 2002, 2003) periodic multiphase materials. The homogenization method establishes the
strong form of the governing differential equations, and the analytical method of solution for the local
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displacement and stress field is based on an averaging process previously employed in constructing a higher-
order theory for functionally graded materials (Aboudi et al., 1999). In all cases extensive comparisons with
analytical and numerical approaches have been performed to verify the validity and reliability of the
proposed micromechanical approach. More recently, the method has been extended to the microme-
chanical analysis of the coupled thermoelastic response of rubber-like matrix composites that are subjected
to finite deformations (Aboudi, 2002).

Due to the aforementioned advantages of the finite thermoelastic—viscoplastic constitutive equations of
Rubin (1987) (namely, the stress is not characterized by a hypoelastic equation so no special rates of stress
need to be considered, no additional material constants need to be introduced, and these equations provide
isotropic elastic behavior together with viscoplasticity with directional hardening in a unified manner), they
are employed in the present paper to describe the behavior of the phases. Thus, these constitutive equations
are incorporated into the aforementioned micromechanical analysis that has been extended to allow large
deformations. As a result of this combination, a macro constitutive law has been established that governs
the overall finite deformation behavior of multiphase materials in which some of the phases are thermo-
elastic—viscoplastic while others are elastic with either finite or infinitesimal strains. This global constitutive
law consists of the instantaneous effective mechanical and thermal stress tangent tensors of the multiphase
material together with a plastic stress tensor that represents the global instantaneous inelastic effects. All
these tensors are determined from the properties of the individual phases in a closed-form manner.

A computational strategy of how to implement the offered micromechanical procedure is given, and results
that illustrate its application are shown. These results includes fibers and inclusions that are represented
by the behavior of SiC reinforcing material, modeled as a nonlinear elastic compressible solid of the
Murnaghan’s type (Murnaghan, 1967) whose measured second and third order elastic moduli have been re-
ported by Chen and Jiang (1993). The thermoelastic—viscoplastic phase has been characterized by that of an
aluminum alloy. The results illustrate the fibrous composite’s response to axial, transverse, axial shear, transverse
shear and thermal loadings. Finally, the response of a particulate composite to hydrostatic loading is shown.

2. Constitutive equations for elastic—viscoplastic materials with finite deformation

Let F denote the deformation gradient from which the right Cauchy—Green deformation tensor C = F'F,
where F' denotes the transpose of F, can be determined. The constitutive relations that describe the be-
havior of the (monolithic) isotropic elastic—viscoplastic material with large deformation have been derived,
using the formulation of Green and Naghdi (1977, 1978) in the strain space, by Rubin (1987) and are
summarized below. They are based on the following representation of the free energy :

w:!//(I%HvBlvﬁZ) (l)
where /5 = detC, 0 is temperature and f3;, 5, are pure measures of elastic distortion given by

pr=5"C" G )

By =L"CC' - CT'Cp (3)

with Cp being a symmetric positive definite tensor denoting the plastic deformation, and the inner product
between two second order tensors A and B is defined by A - B = 4;;B;;. The condition of plastic incom-
pressibility imposes the condition that detCp = 1.
The second Piola—Kirchhoff stress tensor is given by
oy

S =25 (4)

where p, is the mass density of the material in the reference configuration.
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The rate of dissipation is determined from

oy
—Po 6—Cp

Let the Cauchy stress tensor ¢ be represented by

i = & (5)
6=-pl+d (6)

where I is the unit tensor, ¢’ denotes the deviatoric part of ¢ namely, ¢’ -1 = 0, and p is the pressure.
By employing Eq. (4) and the relation

o = L FSF (7)
Po

one obtains that

S=-pn’C'+¢ (8)
where
oy
_ 1257
P = 2:0013 613 (9)
and
oy [ o 1 i e
S' = —2p,) — |C7'CpC = = (Cp-CTH)C!
Po 3 a[)}l P 3( P )
—ap2P Y gt Lot oo 10
Pols 6/3 P P 3 ( P . P) ( )
2
In terms of S, ¢’ is given by
o' = I;'’FS'F' (11)
The rate of dissipation can be obtained as follows:
S
d:chlcs - Cp (12)
The flow rule that controls the evolution of Cp is described by the following strain-space formulation
Co=TA, GCp(0)=1I (13)
where
3
C-C;

It should be noted that since A - C;' = 0, namely, Cp - C;l =0, it follows that

d d . L
& det(Cp) = aicp det(Cp) . CP = det(Cp)CP] . CP =0

which implies that the plastic deformation is incompressible.
In Eq. (13), I is determined by the Bodner—Partom viscoplastic flow rule (Bodner, 2002) as follows:

2uDy 1/72*\"
= _1 (£ 15
5 eXp[ 2(3Jz>] 1)
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where
1
J2:§O'/'O'/ (16)
and Z is a scalar measure of hardening of the material which is separated additively into two parts
Z=x+p (17)

with x representing the isotropic hardening and f§ representing a scalar measure of directional hardening
(which models the Bauschinger effect). They are given as follows:

. —Z, "
fc:mld(Zl —K)—Alzl|:K 2:| s K(O):Zo (18)
1
p=p-U (19)
with
. . BBl
p=mizv - p)-az| LF) v oo (20)
i
which is a second order tensor measure of directional hardening, and
S-S 8- B]

In the above relations, u is the material’s shear modulus and Dy, Zy, Z,, Z,, Z3, my, ma, n, Ay, A3, r1, and r, are
material parameters. In particular, » is a positive parameter controlling the strain-rate sensitivity, Z; is the
saturated value of x, m; and m, are constants controlling the rate of hardening, and the rate of thermal
recovery is controlled by the constants 4;, 4,, r;, and 7.

It should be mentioned that in order to enable a transition from a solid state of the material to a fluid
state, Rubin (1987) introduced instead of (15) the following form for I:

r:z%ap[—%(ZHp)q (22)

3/,
where in the solid state R = 1 whereas in the fluid state R = 0. In the latter case, I approaches D, and the
material flows like a viscoelastic fluid with a kinematic viscosity of 11/Dy. In the present paper however the
original formulation of Bodner (2002) has been followed according to which it is assumed that a limiting
plastic strain rate exists.

2.1. Small deformation limit
Let us present the corresponding expressions of the constitutive equations, the flow rule and the dissi-

pation rate in the special case of the small deformation theory. To this end it is convenient to introduce the
total strain E and plastic strain Ep defined by

E:%(Cfl) Ep:é(Cpr) (23)
The constitutive relation (10) reduces in this limit to (Rubin, 1989)
¢ =2u(E — Ep) (24)

where E' is the deviatoric of E.
The tensor A in Eq. (14) becomes

A=2(E — Ep) (25)
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so the flow rule (13) reduces to

. r
EP = F(E/ — EP) = ZO'/ (26)

Finally, the rate of dissipation takes in the present limit of small deformation the form
d=¢ Ep (27)

From the above relations, one can immediately recognizes the viscoplasticity constitutive relations and
flow rule in the framework of infinitesimal deformations. The rate of dissipation (27) is given, as expected,
by the rate of plastic work.

2.2. Incremental formulation

The use of the aforementioned constitutive equations and flow rule that model the finite deformation of a
viscoplastic material in the micromechanical analysis that will be described in the sequel leads to a large
system of nonlinear algebraic equations. It is more efficient, convenient and practical to represent these
equations in an incremental form. This will be shown to yield a system of linear algebraic equations which
can be easily handled.

Since the micromechanical analysis uses the actual stress, let us employ the following relation that
provides the first (nonsymmetric) Piola—Kirchhoff stress tensor T in terms of the second Piola-Kirchhoff
stress tensor S

T =SF' (28)
By using the expression of S given by Eq. (8), one can establish the following incremental constitutive law

AT = RAF — HAO — PAC, (29)

where R is the current mechanical tangent tensor given by

Rijpi = DiyisFFis 4 Sid i (30)
with
oS, )
Dy =2—L=4p,———— 1
ijkl ack[ Po aC[jaCkl (3 )

and J is the Kronecker delta.
The current thermal tangent tensor H is given by
0S;
Finally, the current inelastic tangent tensor P is determined from

oT;; oS,
Pu=—l= " F 33
o a(CP)kI a(CP)kl ’ ( )
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2.3. Specific constitutive equations

The free energy y in Eq. (1) is specified by (Rubin, 1987)

2p0 = =2pph(0) — (0 — 00)f1(I3) + fo(1z) + 2ppY/ (34)
where f; and f, are functions of the dilatation /3, 4 is a function of temperature 0 and /' is specified by
/ H
- " (B, =3 35
W 30, (B =3) (35)
The following forms have been chosen for f}, f> and #:
K
f(l) = 5(13 —InZ3) (37)
h(0) = S (0% — 200,) + 1,0 (38)
26,

By using these specifications and Eq. (24), one obtains in the small deformation limit the standard con-
stitutive relation

6= [(K—%,u)(E-I)—H{a(H—QO) I—2u(E — Ep) (39)
Thus, K, o, ¢, and 6, can be identified as the bulk modulus, the coefficient of thermal expansion, the specific
heat at constant volume, and the reference temperature, respectively. It is readily seen that the finite de-
formation of the elastic—viscoplastic material is fully specified by its corresponding parameters that control
its behavior in the limit of small deformations, and no additional parameters are needed.

It is worth mentioning that under isothermal conditions, Rubin (1989) employed the following form for

fo(l):
fally) = K[6(1;° = 1) + 3(1,7 = 1)] (40)

Both this function and the one given by (37) generate similar material response. All the results given in this
paper were generated using Eq. (37).

3. Homogenization

Consider a multiphase composite in which the microstructures are distributed periodically in the three-
dimensional space that is given in terms of the global initial coordinates (Xj,X,X3), which describe the
location of the particle at time ¢ = 0 in the undeformed configuration, see Fig. 1(a) and (b) which shows the
repeating unit cell of the periodic composite. In the framework of the homogenization method, the dis-
placement increments Au; are asymptotically expanded in terms of a small parameter ¢ as follows:

where X = (X7, X2, X;) are the initial macroscopic (global) coordinate system, and Y = (1}, 1», ¥3) are the
microscopic (local) initial coordinates that are defined with respect to the repeating unit cell. The size of
the unit cell is further assumed to be much smaller than the size of the body so that the relation between the
global and local systems is
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Fig. 1. (a) A multiphase composite with periodic microstructure. (b) The repeating unit cell. (c) A typical generic cell (labeled as
(p,q,r)) into several of which the repeating unit cell is discretized. The generic cell consists of eight subcells.

Yi:

X;
> (42)

where 9 is a small scaling parameter characterizing the size of the unit cell. This implies that a movement of
order unity on the local scale corresponds to a very small movement on the global scale.
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The homogenization method is applied to composites with periodic microstructures. Thus
Auy(X,Y) = Auye(X, Y + 1,d,) (43)

with o =0, 1,..., where n, are arbitrary integer numbers and the constant vectors d, determine the period
of the structure.

Due to the change of coordinates from the global to the local systems the following relation must be
employed in evaluating the derivative of a field quantity:

) o 120

— + - —
oX; oX; ooy
The quantities Aug; are the displacement increments in the homogenized region and hence they are not

functions of Y;.
Let

AHO[ = AMO,(X) = Aﬁl (45)

(44)

and
Auy; = Aii(X,Y) (46)

where the latter are the fluctuating displacement increments, which are unknown periodic functions with
respect to Y. These displacement increments arise due to the heterogeneity of the medium.

The increments of the deformation gradient components are determined from the displacement expan-
sion increments (41) yielding, in conjunction with Eq. (44), the following expression

AF; = AF;(X) + AF;(X,Y) +0(3) i,j=1,2,3 (47)
where

— Ou;

Fiy(X) = ox, + 0y (48)
and

~ ou;

Fy(X,Y) = oy, + 0y (49)

This shows that the increments of the deformation gradient components can be represented as a sum of the
deformation gradient increments AF;;(X) in the composite and fluctuating deformation gradient increments
AF;(X,Y).

The average of the deformation gradient increments in the repeating unit cell is determined from

l / AF;jdVy = L / (AFU + Af’”)dVy = AF,’] + i Afl,]\]jdry = AFU (50)
Vy Vy Vy Vy Wy Iy
where the divergence theorem has been employed with 7y being the volume of the repeating unit cell and I'y
is its surface. The resulting surface integral is zero because the fluctuating displacement increments Ai;,
being periodic, are equal on the opposite sides of the unit cell, while the normal N; has opposite directions.
For a homogeneous material it is obvious that the fluctuating displacements and deformation gradients
identically vanish.
For a composite that is subjected to homogeneous deformation, one can use Eq. (47) to represent the
displacement increments in the form

Aui(X,Y) = AF,X; + Aii; + O(5°) (51)

The incremental form of the constitutive law of finite deformable elastic—viscoplastic materials has been
established in Eq. (29). In the repeating unit cell region this constitutive law takes the form:
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AT = R(Y)AF — H(Y)AQ - P(Y)ACP(Y) (52)

where T is the first Piola—Kirchhoff stress tensor, R is the 4th order instantaneous mechanical tangent
tensor, H is the instantaneous 2nd order thermal stress tangent tensor, 0 is the temperature in the unit cell,
and P is the inelastic instantaneous tangent tensor.

The form of the Lagrangian equilibrium equations in the repeating unit cell are given, in the absence of
body forces, by (Malvern, 1969):

07},
oY;
In order to establish the equilibrium equations in the framework of the present homogenization procedure,

let us substitute (47) into (52) and differentiate the result with respect to the microvariable coordinates ¥; of
the repeating unit cell. This yields

o
o,

=0 j=1,2,3 (53)

{ Rt (V)[AF U (X) + AFy (X, )] = Hy(Y)A0 = Pus(Y)A(Ce), (Y) } = 0 (54)
Let us define

AT = Ry (Y)AFu(X) — Hy(Y)A0 (55)
and

AT = Rijt(Y)AF (X, Y) = P (Y)A(Cp),, (Y) = 0 (56)

with the latter being the fluctuating stress increments.
The use of these definitions in Eq. (54) implies that
0 = 0

a—EAT,jJra—KM}?:O (57)
Eqgs. (57) are the strong form of the Lagrangian equilibrium equations of the homogenization theory. It is
readily seen that the first terms in (57) involve the unknown fluctuating periodic displacement increments
Au; while the second terms in these equations produce pseudo-body forces. It should be noted that, since the
dependence of 7;) on Y is due to the terms R,z (Y) and H;;(Y) (see Eq. (55)), the derivatives (0/0Y;) AT} (i.e.,
the pseudo-body forces) are zero within any phase of the repeating unit cell except at the boundaries be-
tween two different phases (where different values of the tangent tensors exist) at which it becomes nonzero.

For imposed values of the average deformation gradient increments AF and temperature increment A0,
the unknown fluctuating displacement increments are governed by Eq. (57) subject to periodic boundary
conditions that are prescribed at the boundaries of the repeating unit cell.

Referring to Fig. 1(b), the periodic boundary conditions are expressed by the requirement that the
displacements and tractions should be equal on opposite sides of the repeating unit cell. Thus at the top and
bottom surfaces, right and left surfaces, and front and rear surfaces of the repeating unit cell the dis-
placement and traction increments should be identical:

Aﬁf'bottom = Aﬁiltop (58)
ATl.i|bollom = Ale|top
Aﬁl| eft — Aﬁl—|ri

left eht (59)

ATyl = ATy

right
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Aai‘t‘ront = Afl,‘

rear 60
A (60)

|fr0nt = AT3j‘rear

where AT}; (i,j = 1,2, 3) denotes the increments of the total Piola—Kirchhoff stress components given by
AT; = AT + AT, (61)

In addition to these periodic boundary conditions one needs to impose continuity of displacements and
tractions at the internal interfaces between the phases that fill the repeating unit cell.

4. The concentration tensors

Once the solution of Eq. (57), subject to the internal interfacial conditions and periodic boundary
conditions (58)—(60) has been established, one can proceed and determine the concentration tensors as-
sociated with the defined repeating unit cell. These tensors express the local increment of the deformation
gradient in the cell in terms of the increment of the global applied external deformation gradient and
temperature, as well as in terms of the inelastic deformation increment. To this end, let us express the
induced local deformation gradient increment AF in terms of the applied deformation gradient increment
AF, temperature increment Af and inelastic deformation increment AFp as follows:

AF = A(Y)AF + a(Y)A0 + AFp(Y) (62)

In this equation, A(Y) and a(Y) represent the mechanical and thermal concentration tensors, respectively,
while AFp is the contribution of the increments of the inelastic effects to the local deformation gradient in
the repeating unit cell.

As will be shown in the next section, the determination of these tensors by the micromechanical model
establishes the instantaneous effective stiffness tangent tensor of the composite, which relates the increment
of the average stress in the composite to the increment of applied deformation gradient. It also establishes
the instantaneous effective thermal stress tangent tensor which relates the increment of the average stress in
the composite to the increment of applied temperature. Finally, it provides the dependence of the increment
of the average stress in the composite in terms of the global inelastic stress increment.

By using Eq. (47) in (62), we readily obtain that

AF = AF + A(Y)AF + a(Y)A0 + AFp(Y) = [I; + A(Y)]AF + a(Y)A0 + AFp(Y)
= A(Y)AF + a(Y)A0O + AFp(Y) (63)

where 1, is the 4th order identity tensor.

To obtain the current concentration tensors A(Y), a(Y) and the inelastic increment AFp(Y) a series of
problems must be solved as follows.

Solve Egs. (57) in conjunction with the internal interfacial and periodic boundary conditions with
AF,, = 1 and all other components of AF being equal to zero, A0 = 0 and AFp = 0. The solution of these
coupled differential equations readily provides A4;;; for i,j=1,2,3. This procedure is repeated with
AF», = 1 and all other components of AF equal to zero, A0 = 0 and AFp = 0 which provides Aij, etc... In
this way the current mechanical concentration tensor A(Y) can be established.

The current thermal concentration tensor a(Y) is determined by applying a temperature increment
A0 = 1 in the absence of external mechanical loading and inelastic effects.

Finally, in the absence of any external mechanical or thermal loadings one can use the micromechanical
analysis in the presence of the current inelastic increments for the determination of the current AFp(Y).
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5. The overall constitutive law of the multiphase material

Once the current concentration tensors A(Y) and a(Y) have been determined together with current in-
elastic increment AFp(Y) it is possible to compute the instantaneous effective stiffness tangent tensor R™ of
the multiphase composite, the instantaneous effective thermal stress tangent tensor H*, and the global
inelastic increment ATp. These quantities provide the current overall constitutive law of the multiphase
inelastic composite. To this end, substitution of AF given by (63), in Eq. (52) yields

AT = R(Y)[A(Y)AF + a(Y)A0 + AFp(Y)] — H(Y)AO — P(Y)ACp (64)

Taking the average of both sides of Eq. (64) over the repeating unit cell yields the increment of average
stress AT in the composite in terms of the increment of average deformation gradient via the current ef-
fective stiffness tangent tensor R*, the current effective thermal stress tangent tensor H*, and the current
global inelastic stress increment ATp:

AT = R*AF — H'A0 — ATy (65)
where

R* :Viy R(Y)A(Y)dVy (66)

H = —Viy [R(Y)a(Y) — H(Y)]dVy (67)
and

ATp = *Viy [R(Y)AFp(Y) — P(Y)ACp|dVy (68)

6. Method of solution

In this section we present a solution methodology for Eq. (57) for the finite deformation of composites
that consist of some inelastic phases. In this case the repeating unit cell extends initially over 0 < Y; <D,
0<Y,<H and 0<Y; <L in terms of the local material coordinates (17, ¥>,Y3) as stated above. The mi-
crostructure of the composite on the local level is modeled by discretizing the repeating unit cell into N,, N,
and N, generic cells in the intervals 0< Y, <D, 0< Y, <H and 0< Y3 <L, respectively, where a typical
generic cell is shown see Fig. 1(c). As s illustrated in Fig. 1(c), a generic (p, g, r) cell consists of eight subcells
designated by the triplet (o fy) where each index takes the values 1 or 2, which indicate the relative position
of the given subcell with respect to the local coordinates. The indices p, ¢ and r, whose ranges are
p=12,...,Ny;q=1,2,...,N;and r = 1,2, ..., N,, identify the generic cell in the ¥; space. The dimensions
of the generic cell along the ¥;, ¥, and ¥; axes are d, d¥, B\, i\¥ and 1\, 1{, such that

D=3 (4 +a)

p=1
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N,

L= (zﬁ” n z<;>)
r=1

An approximate solution for the displacement increments is constructed based on volumetric averaging
of the field equations together with the imposition of the periodic boundary conditions and continuity
conditions in an average sense between the subcells used to characterize the materials’ microstructure. This
is accomplished by approximating the fluctuating displacement increments in each subcell using a quadratic
expansion in terms of local coordinates Y(a), Y(ﬁ), Y" centered at the subcell’s midpoint. A higher-order
representation of the fluctuating displacement is necessary in order to capture the local effects created by the
field gradients and the microstructure of the composite. This is in sharp contrast with the so called gen-
eralized method of cells where the displacement increment expansion was linear (see Aboudi and Arnold,
2000).

With the above objective in mind, the fluctuating field in the subcell (o fy) of the (p, g, r)th generic cell is
approximated by a second-order expansion in the local coordinates system. Consequently, according to
Eq. (51) the displacement increments in the subcell can be represented in the form (the generic cell label
(p,q,r) has been omitted)

AuCP) = AFX + AWSH) + 7 AW D + 7 AW, ‘(;>)+Y AW
(9)2 ()2
@2 d(l’)z B h RN . / .
+§<31v1 . AW 1= (37 4 AW +3 |37 - AWGE)

where AW Sg s wh1ch are the increments of the fluctuating volume-averaged displacements, and the higher-
order terms AW 4 ’) must be determined, as shown below, from the governing equations (51) as well as the
periodic boundary conditions (58)—(60) that the fluctuating mechanical field must fulfill, in conjunction
with the interfacial continuity conditions between subcells.

The increments of the deformation gradient are given by (47), in conjunction with Egs. (48) and (49),
namely

(69)

AFSPY = AF; + 8, A" (70)

where 9, = 9/0Y\”, 8, = 9/0Y” and 9; = 9/

In the perfectly elastic case, the quadratic displacement expansion, Eq. (69), produce linear variations in
the deformation gradients and stresses at each point within the subcell. In the presence of inelastic effects,
however, a linear deformation gradients generated by Eq. (69) does not imply the linearity of the stress field
due to the path-dependent deformation. Thus the displacement field microvariables must depend implicitly
on the inelastic stress distributions, giving rise to a higher-order stress field than the linear deformation
gradient field generated from the assumed displacement field representation. In the presence of inelastic
effects, this higher-order stress field is represented by a higher-order Legendre polynomial expansion in the
local coordinates. Therefore, the deformation gradient field generated from the assumed displacement field,
and the resulting mechanical field, must also be expressed in terms of Legendre polynomials:

Z Z > V20 (1 +2m)(1+ 20) A7) P ()P (CP)PU(EY) (71)
=0 m=0 n=0
AT =3 S S T 201+ 21+ 20Ae ) PP (P (72)

T
=
3
Il
=

n=0
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where the nondimensional varlables Cl , deﬁned in the 1nterval —-1< C 1 are given in terms of the local
subcell coordinates as (¥ = 7\ /(d®/2), (P =7 /(n hy '/2), and & = /(15,”/2). For the given dis-
placement field representation, Eq (69), the upper limits on the summatlons in Eq. (71) become 1. The
upper limits on the summations in Eq. (72) are chosen so that an accurate representation of the stress field
(Wthh depends on the amount of the inelastic flow) is obtained within each subcell. The coefficients
A j‘fl’n At 75’”)) in the above expansions are determined as described below.

The 1ncrernents of the deformation gradient coefficients A¢ 7512 in the subcell of cell (p, g, r) are explicitly
determined in terms of the displacement field (69), using the orthogonal properties of Legendre polyno-
mials. They are given as follows (omitting (p, ¢,r)):

AWy ARG ARG
Ao = AF + | ARG ARG AWLGE) (73)

(«By) (xBy) (afy)
AW3(100) AW3(0170> AW3(001)
i (2B7)

\/_d AWl(zoo) 0 0
(xBy) afy
A45(100) AVVZ((ZOO)) 00 (74)

(«By)

_AW3(200) 0 0

2By
J3h 0 AWl((ozo)) 0
By B afy
A¢(0,1,0>): B 0 AWz(mgo)) 0 (75)
afiy
_0 AW3((020)) 0_
0 0 AVV](“/"}’)
(002)
py) _ V3l

A¢(o,0,’1) = 2 “10 0 AWz((O(()léyz) (76)
(o By)
0 0 AWs(oo)z
The increments of the stress coefficients Ar!* , ) in the subcell of cell (p, g, r) are expressed in terms of the
increments of the deformation gradient coefﬁments thermal stress and the unknown inelastic stress dis-
tributions, by first substituting the Legendre polynomial representations for the deformation gradient and

stress increments into the constitutive equations, Eq. (52), and then utilizing the orthogonality of Legendre
polynomials:

xf7) 2f7) A (@B apy (@p
ATElmn) = R< ! >A¢(Lm,n) - H( d >A05105n105017 - A‘I:P [:nn) (77)
The AT: f ,ﬁl , terms represent the increments of the inelastic stress distributions calculated in the following
manner
Lol gl
8y = A [ [ PAGITR(E )RR L o) (79)
-1J-1Ja
where
1
A =g VRI+1D(2m+1)(2n+ 1)

Note that in both Eq. (77) and (78) the cell labeling (p, ¢,#) has been omitted.
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In the course of satisfying the governing equations in a volumetric sense, it is convenient to define the
following increments of stress quantities in the subcell (afy) of generic cell (p, ¢, r):

(p) (9)
” (p.g.r) 1 a2 phl )2 o )
[Atwfiw} —m/ / / YOy @)y AT dv Y a7 dyy) (79)

&L S 2 S

For / =m =n =0, Eq. (79) provides the average stress increments in the subcell, whereas for other values
of (I,m,n) higher-order values are obtained that are needed to describe the governing field equations of the
continuum. It can be verified that

( B7)
At(goo A"go())
o Ay ()
At( 2\/§A1(110A0)
AP _ g ey (80)
(0,1,0) 23 (0,1,0)
I,
(By) _ %y («By)
At(g,O,l) =5 ﬁAT(g,o )1)

which are the needed quantities used in the following.

Subsequently, satisfaction of the zeroth, first, and second moments of the equlllbrlum, Eq. (57) results in
the following 24 relations among the volume-averaged first-order field values At 7 Z ’n> in the different subcells
(afy) of the (p,q,r) generic cell, after lengthy algebraic manipulations

(pg.r)
Atljlfyoo A’z 010 +3 At3,oo1] =0 j=123 (81)

The continuity of traction at the subcell interfaces and between adjacent generic cells, imposed in an
average sense, in the 1-direction can be shown to be ensured by the following relations

12 epy 6 am |7 apy 6 capy 177
*d_AtljlooJrAtuooo 7d_2Atlj(l,0‘0) At1,000+ Atl,loo) =0 (82)

and

-_Atlﬁy)

Tye 3 e % LA PVCT R VT
1(0,0,0) +2 tl/OOO _d_ t1,100) 2 tl/OOO +d t1/100) =0 (83)

] (p—1.g.7)

The continuity of traction in the 2- and 3-directions generate similar conditions which need not be given
here. Eqgs. (82) and (83) and the corresponding ones in the 2- and 3-direction provide altogether 72 additional
relations among the zeroth-order, first-order and second-order field quantities in the generic cell (p, g, r).

The additional 72 relations necessary to determine the unknown coefficients in the displacement ex-
pansion are obtained by imposing the displacement continuity conditions on an average basis at each
subcell and cell interface. In the 1-direction this produces,

! 1 1 (pg.r . 1 . 1 (pg.r)
(187) (187) (187) _ (287) (287) (287)
[AWi(OOO) +§d1AVVi(100) +Zd12AVVi(200):| - |:AVVi(000) - deAWi(loo) +Zd22AVVi(2()O):| (84)

A0 L Ly e e AW ldAW”” LN T wrtan
f(000)+§ 2 i(lOO)"’Z 2 i(200) - i(000) _E 1 (100) "’4 1 i(200)

(85)

with i = 1,2, 3. Similar equations can be established in the 2- and 3-directions.
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Thus, the equilibrium equations together with the continuity of tractions and displacements form 168
equations in the 168 unknown increments of field variables in any interior generic cell (p,q,r),
p=2,....N,—1,9g=2,...,N,—land r=2,...,N, — 1. For the boundary cells p =1,N,, ¢ = 1,N, and
r =1, N, a different treatment must be applied.

For generic cell (1,q,7), for example, the above relations are operative, except Egs. (82) and (83), which
follow from the continuity of tractions between a given cell and the preceding one. These equations must be
replaced by the conditions of continuity of traction at the interior interfaces of cell (1, ¢, r) (imposed on the
average sense) that can be shown to provide

6 7) (187) 6 287y () .
[d_lAtg 0.0) T Alj000) ta At 00 — Af000) =0, j=123 (86)

and by the conditions that the fluctuating displacements are periodic. For example the periodicity of the
displacement in the 1-direction provides (see the first relation in Eq. (58))

(Lg.r) (Npg.r)
[AWlég(y ;dlAW +id§AWi§;{jg§} = {AWigggg +%d2Ang(;> _,_idZAW (87)
where i = 1, 2, and 3. Similar treatments apply for cell (p, 1,7) and (p, g, 1).

For the boundary generic cell (N,,q,r), for example, the previously derived governing equations are
operative except for the relations given by Eq. (85), which are obviously not applicable. These are replaced
by the conditions that the tractions are periodic. For example the periodicity of tractions provide the
following equations to be used in cell (N,,q,r) (see the 2nd relation in Eq. (58)):

6 (Npsqﬁ’”)

(Lg.r) 6
(1By) 187) 287 —
d_lAtlj(l, 0,0) _At1j000:| [ Atl/lbo +At1/000 =0 (88)

Similar treatments hold for boundary cells (p,N,,r) and (p, q,N,).

Consequently, the governing equations for the interior and boundary cells form a linear system of 168
N,N,N, algebraic equations in the unknown displacement coefficient increments that appear in the qua-
dratic expansion (69). The final form of this system of equations can be symbolically represented by

KAU = Af + Ag (89)

where the structural stiffness matrix K contains information on the geometry and the properties of the
materials within the individual subcells (o ffy) within the generic cells comprising the repeating unit cell of
multiphase periodic composite. The field vector AU contains the unknown expansion coefficients in each
subcell, i.e.,

AU = [AU Y L AURE, (90)
where in subcell (¢ fy) of generic cell (p,q,r) these coefficients are

U = (W00, W00y, Wo10)s Woory, Weooys W20, W(ooz>](”ﬁy)

pqr pqr

The thermomechanical force vector Af contains information on the increment of applied average defor-
mation gradient AF and the applied temperature increment Af. The vector Ag appearing on the right-
hand side of Eq (89) contains the inelastic effects given in terms of the integrals of represented by the

coeflicients ArP“ fm - see Eq. (78). The solution that establishes the response of the composite is obtained

incrementally in time by solving Eq. (89) for the increments of microvariables at a given time ¢, from which
the microvariables themselves can be readily determined.
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7. Global constitutive relations

Once the solution AU for a given set of deformation gradient and temperature increments has been
established for a given type of loading, we can determine, in particular, the average deformation gradient
increments in all subcells via the corresponding concentration tensors and inelastic deformation increment,
see Eq. (63). Thus from the first relation in (80), the increment of average stress [At gﬁo)](”q’> in subcell
(o py) of the generic cell (p,q,r) is given by

21 Par) , (p:q:7)
(287) _ afy (afy) («fy) B
[At(o,o‘o)] = [R( f )A‘b(g,o,B) A0 — AT;OOO]
N N By : 2By ] @9
— [ROP(ACPDAF + aC#A0 + AFZ" ) — HOPA0 - A<y, (91)

The increment of the average stress in the multiphase periodic composite is determined from

=5 Z Z Z Z 4P 1 {At(gﬁo](”’q’” (92)

g=1 r=1 apy=1

Consequently, Eq. (91) and (92) establish the effective constitutive law of the multiphase composite in the
form

AT = R*AF — H*AO — AT (93)

where R* and H" are the instantaneous effective stiffness and effective thermal stress tangent tensors of the
composite which are given by

1 Yo Moo N 2 ar)
R = DL Z dip)h%‘ﬁ lgr) [R(a/f“/)A(&lf"/)] gk (94)
p=1l g=1 r=1 opfy=1
L Y% % @ J) [RF?) ()] P)
L ) () 1(r) [R (@ B7) g (2 B7) afp ¢
DHL Z Z Z d, hﬂ L [R H ] (99
p=l ¢g=1 r=1 afy=
and the global inelastic stress tensor is determined from
T L Qo N N5 000 [ A F) (xpy) ] P47
ATp= = 3030 D2 dPhPi [RUVARET - acily | (96)

8. Computational procedure

Based on the developed micromechanical analysis, the following computational strategy is employed to
determine the elastic—viscoplastic response of the multiphase material at a give time increment.

1. With the current local deformation gradients F*#? and plastlc deformations C; (*7) in all subcells, com-
pute the instantaneous mechanical tangent tensors R*#? Eq. (30), the thermal stress tangent tensors
H®#" Eq. (32), and the current inelastic tangent tensor P*#” Eq. (33).

2. The mechanical concentration factors A*#? can be determined by employing the described microme-
chanical procedure by imposing AF with A0 = 0 and in the absence of any inelastic effects, see Eq. (63).

3. The thermal concentration factors a*#?) can be determined by employing the micromechanical proce-
dure by imposing A0 with AF = 0 and in the absence of any inelastic effects, see Eq. (63).
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4. Once the concentration factors A®#” and a*#?) have been determined, one can readily compute the cur-
rent effective stiffness tangent tensor R*, Eq. (94), and the current effective thermal stress tangent tensor
H*, Eq. (95).

5. For the specific external thermomechanical loading that is imposed on the multiphase material and with
the present values of Ar f} m)n that have been predicted from the previous increment, one can apply the

derived mlcromechamcal procedure to determine the microvariables increments by solving Eq. (39).

These readily provide the global stress increment AT, see Eq. (92). Hence the stress tensor T can be com-

puted from

T = T|previ0us + AT
Thus the overall response of the composite to the specific applied loading F and temperature 0 has been
determined in the present increment.

6. Use the evolution equations for the plastic deformation Cp (Eq. (13)), the evolution equation for isotro-
pic hardening x (Eq. (18)), and the evolutlon equat1on for the directional hardening g (Eq. (20)) to de-

termine the inelastic stress coefficients A‘EP lmn (Eq. (78)) that are needed in the next time step. In

addition, compute the rate of dissipation d*#?) (Eq. (12)) and verify that it is not negative. Otherwise
the computational procedure should be stopped.

7. With AF = 0, A0 = 0 and with the current predicted values of Arp [mn , compute from Eq. (63) AFp(Y)
by employing the micromechanical procedure.

8. Use Eq. (96) to determine ATp from which the global inelastic stress tensor can computed according to:

Tp = Tp| + ATp

previous

9. Compute the current local deformation gradient from

oafiy afy oafy
F@Fn) — pf >|previ0us + AF@F

This procedure is repeated in the next increment.

Obviously, this stepwise procedure is explicit of the Eulerian type. The numerical examples that are
reported in the following section are given for illustrative purposes in order to show the behavior of the
finite deformation of an elastic—viscoplastic composite, based on the established micromechanical analysis,
under various types of loading. In practical applications however, a type of Newtonian iterative procedure,
in conjunction with an efficient integration procedure of the evolution equations, would be necessary. For a
recent publication that discusses the integration of viscoplasticity and creep equations see Plesek and
Korous (2002).

9. Applications

The developed finite deformation micromechanical analysis is applied herein to investigate the response
of a thermoelastic—viscoplastic matrix, reinforced either by continuous fibers or by inclusions.

The fibers and the inclusions are assumed to be a nonlinearly elastic compressible hyperelastic material
whose strain energy function W is given by Murnaghan’s representation (Murnaghan, 1967):

A+2 l+2m
SE K — 2uk +

where K, K>, K3 are the invariants of the large Cauchy—Green strain tensor E (defined in Eq. (23)), 4, u are
the second order elastic moduli, and I, m, n are the third order moduli. For SiC fibers and inclusions, whose

W= K} — 2mK\K; + nK; (97)
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Table 1
Material constants for SiC (Chen and Jiang, 1993)
2 (GPa) u (GPa) [ (GPa) m (GPa) n (GPa)
97.66 188 -82.1 =310 —-683
Table 2
Material properties of the aluminum alloy (Rowley and Thornton, 1996)
Property Value
K 81.76 GPa
u 31.35 GPa
o 22.5x107¢ K
Dy 10000 s~!
n 1.95
m 0.532 MPa™!
my 3.95 MPa!
Z 828 MPa
Z 937 MPa
VA 275 MPa
Al 0
A 0

measured second and third order elastic moduli have been reported by Chen and Jiang (1993), these pa-
rameters are given in Table 1. For illustrative purposes, Eq. (97) is employed in the following over a wide
range of deformation so that the strain failure of the SiC fibers which is about 1-1.5% is ignored.

The incremental constitutive equation that results from Eq. (97) is given by

AT = RAF (98)

where the instantaneous elastic tangent stiffness tensor R of the material is computed using the relations
given by Eq. (30) and (31).

The material parameters of the thermoelastic—viscoplastic matrix, whose constitutive behavior has been
described in Section 2, are given in Table 2. For infinitesimal deformations these parameters correspond to
an aluminum alloy that has been characterize by Rowley and Thornton (1996). It should be noted that the
effect of thermal recovery of hardening is neglected.

9.1. Continuous reinforced composites

Here it is assumed that the continuous fibers are oriented in the 1-direction. Fig. 2 shows the response to
uniaxial stress loading of the individual (noninteracting) SiC fibers and the matrix in which the inelastic
effects have been neglected. By neglecting the inelastic effects, the matrix behaves as a nonlinearly elastic
material. This nonlinear response of the matrix is well observed in Fig. 2, but the SiC fibers exhibit a linear
response in the considered deformation region shown in the figure.

Fig. 3 shows the isothermal elastic—viscoplastic response of the monolithic matrix that is subjected to two
rates of uniaxial stress loading: 0.01 and 1 s~!. A comparison with its elastic behavior shown in Fig. 2 shows
that the effects of the plastic flow on the response are significant. The decrease of the stress with increasing
amount of loading is similar to that observed by Rubin (1989).

Consider now a composite that is subjected to uniaxial stress loading applied in the axial direction
(namely, in the fiber direction) at a rate of 1 s~'. The response of the composite is shown in Fig. 4 for two
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Fig. 2. The response of the individual SiC and matrix subjected to uniaxial stress loading. The viscoplastic effects of the matrix have
been neglected.
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Fig. 3. The response of the elastic—viscoplastic matrix subjected to uniaxial stress loading at two rates.

values of volume fraction vy = 0.25 and 0.4. As is expected, higher stress values are obtained with increasing
fiber content. Fig. 5, on the other hand shows the response of the composite when it is subjected to uniaxial
stress loading in the transverse direction (e.g. in the 2-direction). As expected, lower stress values are ob-
tained.

Fig. 6 shows the response of the unreinforced elastic—viscoplastic matrix to simple shear loading at two
rates: 0.01 and 1 s~!. Here the decrease of the shear stress with increasing loading is seen to be less pro-
nounced as compared to the uniaxial stress loading case of Fig. 3. This behavior is consistent with the
results of Rubin (1987).

Fig. 7 exhibits the composite’s behavior when it is subjected to a simple transverse shear loading F»; at a
rate of 1 s! for two values of fiber volume fraction v;. Since the first Piola—Kirchhoff stress tensor T is not
symmetric, the figure shows the average of the transverse shear components (753 + T3,)/2. Similarly, Fig. 8
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Fig. 4. The response of a composite with continuous fibers subjected to uniaxial stress loading in the axial direction for two values of
fiber volume fraction.
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Fig. 5. The response of a composite with continuous fibers subjected to uniaxial stress loading in the transverse direction for two values
of fiber volume fraction.

exhibit the composite’s behavior when it is subjected to a simple axial shear loading F, at a rate of 1 s~! for
two values of fiber volume fraction v;. Here, higher stress values are obtained in comparison with the
transverse shear loading due to the fiber interaction.

So far results were generated under isothermal loading conditions. Let us present the response of the
composite which is subjected to thermal loading conditions. Since the finite thermoelastic constitutive
equations of the SiC material are not known, we assume in the following that the SiC fibers are linearly
elastic material whose Lame’ constants /4 and p are given in Table 1, and whose coefficient of thermal
expansion has the value 4 x 107® K~!. Figs. 9 and 10 exhibit the composite’s response to a thermal loading
that starts from the reference temperature 0, = 0 °C and rises up to temperature 0 = 600 °C, after which it
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Fig. 6. The response of the elastic-viscoplastic matrix subjected to simple shear loading at two rates.
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Fig. 7. The response of a composite with continuous fibers subjected to a simple transverse shear loading for two values of fiber volume
fraction.

drops back to 0 °C. The resulting axial F}; and transverse F,, = F33; deformations are shown. Both figures
clearly display the effect of viscoplasticity which can be detected by comparison with the corresponding
dashed curves that show the induced deformations in the composite due to the same temperature cycle but
in the absence of any viscoplastic effects in the matrix material. It should be noted that in the range of
0<0<600 the induced deformation is still in the small strain domain. A much higher temperature is
needed to get finite strain but for the present matrix characterization this is not realistic.

9.2. Particulate composites

Consider a particulate composite in which SiC inclusions that are characterized by Table 1, are rein-
forcing an elastic—viscoplastic matrix whose properties are given by Table 2. Let the composite be subjected
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Fig. 8. The response of a composite with continuous fibers subjected to a simple axial shear loading for two values of fiber volume

fraction.
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Fig. 9. Axial and transverse deformations due to a temperature cycle applied on a fibrous composite with fiber volume fraction

vr = 0.25. The dashed lines exhibit the deformations when the viscoplasticity effects of the matrix have been neglected.

to a hydrostatic loading: F'; = F», = F3;. The response of the composite to this type of loading is shown in
Fig. 11 for inclusion’s volume fractions: vy = 0.05, 0.25, 0.4. The computations have been stopped whenever
the rate of dissipation becomes negative. Also shown in the figure is the response to hydrostatic loading
of the nonlinearly elastic matrix (in which the viscoplastic effects have been neglected). It should be noted
that the three response curves of the composite shown in the figure are rather similar to the composite’s
response obtained when the inelastic effects of the matrix are neglected. However, although the overall
responses of the particulate composites in the presence and absence of viscoplastic effects of the matrix are
similar, the inelastic mechanism of the matrix generates high local plastic flow in the matrix regions which
at certain level of loading produces negative dissipation.
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Fig. 10. Axial and transverse deformations due to a temperature cycle applied on a fibrous composite with fiber volume fraction
vy = 0.4. The dashed lines exhibit the deformations when the viscoplasticity effects of the matrix have been neglected.
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Fig. 11. The response of a particulate composite to hydrostatic loading for three values of inclusion volume ratio. Also shown is the
response of the nonlinearly elastic matrix in the absence of viscoplastic effects to a hydrostatic loading.

10. Conclusions

By incorporating a set of constitutive relations, that represents the finite deformation of isotropic elastic—
viscoplastic materials with isotropic and directional hardening, into a micromechanical model which is
capable of simulating finite deformation behavior, a global incremental constitutive anisothermal law for
multiphase elastic-viscoplastic composites has been established. The composite’s constitutive equations
involve the instantaneous effective stiffness tangent tensor, the instantaneous effective thermal stress tangent
tensor, and the inelastic global stress tensor, all of which are given in a closed-form manner. This con-
stitutive law can be incorporated into an appropriate structural analysis in order to analyze the response of
inelastic composite structures which are subjected to finite deformations.
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