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Abstract

Nonlinear thermoelastic–viscoplastic constitutive equations for large deformations with isotropic and directional

hardening, are incorporated into a micromechanical finite strain analysis. As a result of this analysis, which is based on

the homogenization technique for periodic microstructures, a global thermoinelastic constitutive law is established that

governs the overall response of multiphase materials under finite deformations. This constitutive law is expressed in

terms of the instantaneous effective mechanical and thermal stress tangent tensors together with the instantaneous

global inelastic stress tensor that represents the viscoplastic effects. Results for a thermoinelastic matrix reinforced by a

hyperelastic compressible material are given that illustrate the response of fibrous and particulate composites to various

types of loading.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

There are many investigations concerning the behavior of metal matrix composites whose response is

predicted by a suitable micromechanical theory. The behavior of the inelastic matrix is represented either by

the classical theory of plasticity or by an elastic–viscoplastic representation. As an example of such an
approach is an investigation which deals with a metallic matrix reinforced by discontinuous fibers that has

been recently presented by Pahr and Arnold (2002). All these investigations have been confined to infini-

tesimal deformations. Investigations that deal with finite deformations are very few. This is because an

appropriate micro/meso constitutive model that is capable of representing the finite deformation of both

the monolithic inelastic phase and, in addition, a generalization of the micromechanical analysis to ac-

commodate large deformation are necessary.

Let us first discuss some constitutive models for the representation of the response of finite elastic–

viscoplastic monolithic materials. The formulation of the theory of plasticity with large deformation
has been presented by Lubliner (1990) where related references are given. In their discussion of the
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computational aspects of finite deformation of plasticity and viscoplasticity, Simo and Ortiz (1985) con-

sidered the multiplicative decomposition of the deformation gradient, the additive decomposition of the

Lagrangian strain and the additive decomposition of the rate of deformation tensor. These three alter-

natives form central ingredients in the development of inelastic finite deformation constitutive equations.
Rubin (1987) presented an elastic–viscoplastic model with isotropic and directional hardening (that ac-

counts for the Bauschinger effect), by extending the Bodner–Partom unified viscoplasticity theory (Bodner,

2002) to large deformations. His approach is based on the general formulation of Green and Naghdi (1977,

1978) in the strain space. In this formulation the Helmholtz free energy depends on four scalar invariants:

two scalars which are pure measures of elastic distortional deformation, a measure of total dilatation, and

temperature. The primary variables are the right Cauchy–Green deformation tensor and its plastic analog.

The finite deformation of the material is characterized by the same set of material parameters that appear in

the infinitesimal deformation theory and thus no additional material constants are needed. Furthermore,
since the stress is not characterized by hypoelastic equations, no special invariant rates of stress (like the

Jaumann) need to be introduced. Finally, Rubin�s model allows a transition from elastic–viscoplastic solid

to a fluid state. A formulation in the current configuration has been presented by Nishiguchi et al. (1988).

Here an additive decomposition of the rate of deformation tensor into elastic and inelastic parts has been

assumed. The elastic part is given in terms of a hypoelastic constitutive law, while the inelastic part is

formulated in terms of an objective stress rate. More recently, Sansour and Kollmann (1997) introduced a

finite elastic–viscoplastic theory based on the unified viscoplasticity theory of Bodner and Partom for in-

finitesimal strains. In the framework of this theory a multiplicative decomposition of the deformation
gradient into elastic and inelastic parts is introduced. The elastic part is formulated as a hyperelastic

material in terms of logarithmic strains, and for the inelastic part, an evolution equation is presented. A

discussion of the computational issues of finite elastoplasticity theory based on logarithmic strains has been

presented by Peric et al. (1992) where an extensive list of references can be found. A formulation of hy-

perelastic-based elastoplastic constitutive equations for finite deformation using a logarithmic stress and

strain measures have been presented by Eterovic and Bathe (1990). Finite deformation constitutive

equations for elastic–viscoplastic solids have been presented by Weber and Anand (1990), where the

multiplicative decomposition of the deformation gradient, has been employed to represent the material in
the elastic region as a hyperelastic solid, in conjunction with a logarithmic elastic strain measure. For the

plastic deformation gradient an evolution equation is presented.

As to micromechanical models in which finite deformation elastic–viscoplastic constitutive laws have

been incorporated, we mention the paper by Aboudi (1986) who employed a micromechanical approach

based on few subcells with first-order representation of the displacement field. The infinitesimal Bodner–

Partom equations have been extended in a straightforward manner to large deformation by implementing

the additive decomposition of the rate of deformation tensor and the Jaumann�s rate of change of stress

tensor. A more recent investigation has been presented by Van der Sluis et al. (2001). In this investigation
the homogenization method has been employed to analyze a composite that consists of a polycarbonate

elastic–viscoplastic matrix reinforced by elastic particles. The finite elastic–viscoplastic matrix is modeled as

an hyperelastic material in the elastic region, whereas Perzyna�s viscoplasticity (Perzyna, 1966) is used to

characterize the inelastic part. The additive decomposition of the rate of deformation tensor is used in

conjunction with the objective Truesdell rate. The rubber inclusions are modeled by a hyperelastic com-

pressible neo-Hookean constitutive law. Finally, the finite element procedure is employed to solve the

governing equations.

For infinitesimal deformations, the homogenization method for periodic microstructures in conjunction
with an analytical method of solution, have been recently employed to investigate the response of ther-

moelastic (Aboudi et al., 2001), electro-magneto-thermo-elastic (Aboudi, 2001) and thermoinelastic

(Aboudi et al., 2002, 2003) periodic multiphase materials. The homogenization method establishes the

strong form of the governing differential equations, and the analytical method of solution for the local
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displacement and stress field is based on an averaging process previously employed in constructing a higher-

order theory for functionally graded materials (Aboudi et al., 1999). In all cases extensive comparisons with

analytical and numerical approaches have been performed to verify the validity and reliability of the

proposed micromechanical approach. More recently, the method has been extended to the microme-
chanical analysis of the coupled thermoelastic response of rubber-like matrix composites that are subjected

to finite deformations (Aboudi, 2002).

Due to the aforementioned advantages of the finite thermoelastic–viscoplastic constitutive equations of

Rubin (1987) (namely, the stress is not characterized by a hypoelastic equation so no special rates of stress

need to be considered, no additional material constants need to be introduced, and these equations provide

isotropic elastic behavior together with viscoplasticity with directional hardening in a unified manner), they

are employed in the present paper to describe the behavior of the phases. Thus, these constitutive equations

are incorporated into the aforementioned micromechanical analysis that has been extended to allow large
deformations. As a result of this combination, a macro constitutive law has been established that governs

the overall finite deformation behavior of multiphase materials in which some of the phases are thermo-

elastic–viscoplastic while others are elastic with either finite or infinitesimal strains. This global constitutive

law consists of the instantaneous effective mechanical and thermal stress tangent tensors of the multiphase

material together with a plastic stress tensor that represents the global instantaneous inelastic effects. All

these tensors are determined from the properties of the individual phases in a closed-form manner.

A computational strategy of how to implement the offeredmicromechanical procedure is given, and results

that illustrate its application are shown. These results includes fibers and inclusions that are represented
by the behavior of SiC reinforcing material, modeled as a nonlinear elastic compressible solid of the

Murnaghan�s type (Murnaghan, 1967) whose measured second and third order elastic moduli have been re-

ported by Chen and Jiang (1993). The thermoelastic–viscoplastic phase has been characterized by that of an

aluminum alloy. The results illustrate the fibrous composite�s response to axial, transverse, axial shear, transverse

shear and thermal loadings. Finally, the response of a particulate composite to hydrostatic loading is shown.

2. Constitutive equations for elastic–viscoplastic materials with finite deformation

Let F denote the deformation gradient from which the right Cauchy–Green deformation tensor C ¼ FtF,

where Ft denotes the transpose of F, can be determined. The constitutive relations that describe the be-

havior of the (monolithic) isotropic elastic–viscoplastic material with large deformation have been derived,

using the formulation of Green and Naghdi (1977, 1978) in the strain space, by Rubin (1987) and are

summarized below. They are based on the following representation of the free energy w:

w ¼ wðI3; h; b1; b2Þ ð1Þ
where I3 ¼ detC, h is temperature and b1, b2 are pure measures of elastic distortion given by

b1 ¼ I1=33 C�1 � CP ð2Þ

b2 ¼ I2=33 CPC
�1 � C�1CP ð3Þ

with CP being a symmetric positive definite tensor denoting the plastic deformation, and the inner product

between two second order tensors A and B is defined by A � B ¼ AijBij. The condition of plastic incom-

pressibility imposes the condition that detCP ¼ 1.

The second Piola–Kirchhoff stress tensor is given by

S ¼ 2q0

ow
oC

ð4Þ

where q0 is the mass density of the material in the reference configuration.

J. Aboudi / International Journal of Solids and Structures 40 (2003) 2793–2817 2795



The rate of dissipation is determined from

_dd ¼ �q0

ow
oCP

� _CCP ð5Þ

Let the Cauchy stress tensor r be represented by

r ¼ �pIþ r0 ð6Þ

where I is the unit tensor, r0 denotes the deviatoric part of r namely, r0 � I ¼ 0, and p is the pressure.

By employing Eq. (4) and the relation

r ¼ q
q0

FSFt ð7Þ

one obtains that

S ¼ �pI1=23 C�1 þ S0 ð8Þ
where

p ¼ �2q0I
1=2
3

ow
oI3

ð9Þ

and

S0 ¼ �2q0I
1=3
3

ow
ob1

C�1CPC
�1

�
� 1

3
ðCP � C�1ÞC�1

�
� 4q0I

2=3
3

ow
ob2

C�1CPC
�1CPC

�1

�
� 1

3
ðCPC

�1 � C�1CPÞC�1

�
ð10Þ

In terms of S0, r0 is given by

r0 ¼ I�1=2
3 FS0Ft ð11Þ

The rate of dissipation can be obtained as follows:

_dd ¼ 1

2
C�1

P CS
0 � _CCP ð12Þ

The flow rule that controls the evolution of CP is described by the following strain-space formulation

_CCP ¼ CA; CPð0Þ ¼ I ð13Þ
where

A ¼ 3

C � C�1
P

C� CP ð14Þ

It should be noted that since A � C�1
P ¼ 0, namely, _CCP � C�1

P ¼ 0, it follows that

d

dt
detðCPÞ ¼

o

oCP

detðCPÞ � _CCP ¼ detðCPÞC�1
P � _CCP ¼ 0

which implies that the plastic deformation is incompressible.
In Eq. (13), C is determined by the Bodner–Partom viscoplastic flow rule (Bodner, 2002) as follows:

C ¼ 2lD0

J 1=2
2

exp

�
� 1

2

Z2

3J2

� �n�
ð15Þ
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where

J2 ¼
1

2
r0 � r0 ð16Þ

and Z is a scalar measure of hardening of the material which is separated additively into two parts

Z ¼ j þ b ð17Þ
with j representing the isotropic hardening and b representing a scalar measure of directional hardening

(which models the Bauschinger effect). They are given as follows:

_jj ¼ m1
_ddðZ1 � jÞ � A1Z1

j � Z2

Z1

� �r1
; jð0Þ ¼ Z0 ð18Þ

b ¼ b �U ð19Þ
with

_bb ¼ m2
_ddðZ3U� bÞ � A2Z1

b � b
Z2
1

� �r2=2
V; bð0Þ ¼ 0 ð20Þ

which is a second order tensor measure of directional hardening, and

U ¼ S

½S � S	1=2
V ¼ b

½b � b	1=2
ð21Þ

In the above relations, l is the material�s shear modulus and D0, Z0, Z1, Z2, Z3, m1, m2, n, A1, A2, r1, and r2 are
material parameters. In particular, n is a positive parameter controlling the strain-rate sensitivity, Z1 is the
saturated value of j, m1 and m2 are constants controlling the rate of hardening, and the rate of thermal

recovery is controlled by the constants A1, A2, r1, and r2.
It should be mentioned that in order to enable a transition from a solid state of the material to a fluid

state, Rubin (1987) introduced instead of (15) the following form for C:

C ¼ D0 exp

�
� 1

2

Z2R2

3J2

� �n�
ð22Þ

where in the solid state R ¼ 1 whereas in the fluid state R ¼ 0. In the latter case, C approaches D0 and the

material flows like a viscoelastic fluid with a kinematic viscosity of l=D0. In the present paper however the

original formulation of Bodner (2002) has been followed according to which it is assumed that a limiting

plastic strain rate exists.

2.1. Small deformation limit

Let us present the corresponding expressions of the constitutive equations, the flow rule and the dissi-

pation rate in the special case of the small deformation theory. To this end it is convenient to introduce the

total strain E and plastic strain EP defined by

E ¼ 1

2
ðC� IÞ EP ¼ 1

2
ðCP � IÞ ð23Þ

The constitutive relation (10) reduces in this limit to (Rubin, 1989)

r0 ¼ 2lðE0 � EPÞ ð24Þ
where E0 is the deviatoric of E.

The tensor A in Eq. (14) becomes

A ¼ 2ðE0 � EPÞ ð25Þ
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so the flow rule (13) reduces to

_EEP ¼ CðE0 � EPÞ ¼
C
2l

r0 ð26Þ

Finally, the rate of dissipation takes in the present limit of small deformation the form

_dd ¼ r0 � _EEP ð27Þ

From the above relations, one can immediately recognizes the viscoplasticity constitutive relations and

flow rule in the framework of infinitesimal deformations. The rate of dissipation (27) is given, as expected,

by the rate of plastic work.

2.2. Incremental formulation

The use of the aforementioned constitutive equations and flow rule that model the finite deformation of a

viscoplastic material in the micromechanical analysis that will be described in the sequel leads to a large
system of nonlinear algebraic equations. It is more efficient, convenient and practical to represent these

equations in an incremental form. This will be shown to yield a system of linear algebraic equations which

can be easily handled.

Since the micromechanical analysis uses the actual stress, let us employ the following relation that

provides the first (nonsymmetric) Piola–Kirchhoff stress tensor T in terms of the second Piola–Kirchhoff

stress tensor S

T ¼ SFt ð28Þ

By using the expression of S given by Eq. (8), one can establish the following incremental constitutive law

DT ¼ RDF�HDh � PDCP ð29Þ

where R is the current mechanical tangent tensor given by

Rijkl ¼ DirlsFjrFks þ Sildjk ð30Þ

with

Dijkl ¼ 2
oSij
oCkl

¼ 4q0

o2w
oCijoCkl

ð31Þ

and djk is the Kronecker delta.

The current thermal tangent tensor H is given by

Hij ¼ � oSir
oh

Fjr ð32Þ

Finally, the current inelastic tangent tensor P is determined from

Pijkl ¼ � oTij
oðCPÞkl

¼ � oSir
oðCPÞkl

Fjr ð33Þ
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2.3. Specific constitutive equations

The free energy w in Eq. (1) is specified by (Rubin, 1987)

2q0w ¼ �2q0hðhÞ � ðh � h0Þf1ðI3Þ þ f2ðI3Þ þ 2q0w
0 ð34Þ

where f1 and f2 are functions of the dilatation I3, h is a function of temperature h and w0 is specified by

w0 ¼ l
2q0

ðb1 � 3Þ ð35Þ

The following forms have been chosen for f1, f2 and h:

f1ðI3Þ ¼ 3Ka ln I3 ð36Þ

f2ðI3Þ ¼
K
2
ðI3 � ln I3Þ ð37Þ

hðhÞ ¼ cv
2h0

ðh2 � 2hh0Þ þ g0h ð38Þ

By using these specifications and Eq. (24), one obtains in the small deformation limit the standard con-

stitutive relation

r ¼ K
��

� 2

3
l

�
ðE � IÞ � 3Kaðh � h0Þ

�
I� 2lðE� EPÞ ð39Þ

Thus, K, a, cv and h0 can be identified as the bulk modulus, the coefficient of thermal expansion, the specific

heat at constant volume, and the reference temperature, respectively. It is readily seen that the finite de-

formation of the elastic–viscoplastic material is fully specified by its corresponding parameters that control

its behavior in the limit of small deformations, and no additional parameters are needed.

It is worth mentioning that under isothermal conditions, Rubin (1989) employed the following form for

f2ðI3Þ:

f2ðI3Þ ¼ K½6ðI�1=6
3 � 1Þ þ 3ðI1=33 � 1Þ	 ð40Þ

Both this function and the one given by (37) generate similar material response. All the results given in this

paper were generated using Eq. (37).

3. Homogenization

Consider a multiphase composite in which the microstructures are distributed periodically in the three-

dimensional space that is given in terms of the global initial coordinates ðX1;X2;X3Þ, which describe the

location of the particle at time t ¼ 0 in the undeformed configuration, see Fig. 1(a) and (b) which shows the

repeating unit cell of the periodic composite. In the framework of the homogenization method, the dis-

placement increments Dui are asymptotically expanded in terms of a small parameter d as follows:

DuiðXÞ ¼ Du0iðX;YÞ þ dDu1iðX;YÞ þ � � � i ¼ 1; 2; 3 ð41Þ

where X ¼ ðX1;X2;X3Þ are the initial macroscopic (global) coordinate system, and Y ¼ ðY1; Y2; Y3Þ are the

microscopic (local) initial coordinates that are defined with respect to the repeating unit cell. The size of
the unit cell is further assumed to be much smaller than the size of the body so that the relation between the

global and local systems is
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Yi ¼
Xi

d
ð42Þ

where d is a small scaling parameter characterizing the size of the unit cell. This implies that a movement of
order unity on the local scale corresponds to a very small movement on the global scale.

Fig. 1. (a) A multiphase composite with periodic microstructure. (b) The repeating unit cell. (c) A typical generic cell (labeled as

ðp; q; rÞ) into several of which the repeating unit cell is discretized. The generic cell consists of eight subcells.
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The homogenization method is applied to composites with periodic microstructures. Thus

DuaiðX;YÞ ¼ DuaiðX;Yþ npdpÞ ð43Þ
with a ¼ 0; 1; . . ., where np are arbitrary integer numbers and the constant vectors dp determine the period

of the structure.

Due to the change of coordinates from the global to the local systems the following relation must be
employed in evaluating the derivative of a field quantity:

o

oXi
! o

oXi
þ 1

d
o

oYi
ð44Þ

The quantities Du0i are the displacement increments in the homogenized region and hence they are not

functions of Yi.
Let

Du0i ¼ Du0iðXÞ � D�uui ð45Þ
and

Du1i � D~uuiðX;YÞ ð46Þ
where the latter are the fluctuating displacement increments, which are unknown periodic functions with

respect to Y. These displacement increments arise due to the heterogeneity of the medium.
The increments of the deformation gradient components are determined from the displacement expan-

sion increments (41) yielding, in conjunction with Eq. (44), the following expression

DFij ¼ DF ijðXÞ þ DeFFijðX;YÞ þOðdÞ i; j ¼ 1; 2; 3 ð47Þ
where

F ijðXÞ ¼
o�uui
oXj

þ dij ð48Þ

and eFFijðX;YÞ ¼
o~uui
oYj

þ dij ð49Þ

This shows that the increments of the deformation gradient components can be represented as a sum of the

deformation gradient increments DF ijðXÞ in the composite and fluctuating deformation gradient increments

DeFFijðX;YÞ.
The average of the deformation gradient increments in the repeating unit cell is determined from

1

VY

Z
VY

DFij dVY ¼ 1

VY

Z
VY

ðDF ij þ DeFFijÞdVY ¼ DF ij þ
1

VY

Z
CY

D~uuiNj dCY ¼ DF ij ð50Þ

where the divergence theorem has been employed with VY being the volume of the repeating unit cell and CY

is its surface. The resulting surface integral is zero because the fluctuating displacement increments D~uui,
being periodic, are equal on the opposite sides of the unit cell, while the normal Nj has opposite directions.

For a homogeneous material it is obvious that the fluctuating displacements and deformation gradients

identically vanish.
For a composite that is subjected to homogeneous deformation, one can use Eq. (47) to represent the

displacement increments in the form

DuiðX;YÞ ¼ DF ijXj þ D~uui þOðd2Þ ð51Þ
The incremental form of the constitutive law of finite deformable elastic–viscoplastic materials has been

established in Eq. (29). In the repeating unit cell region this constitutive law takes the form:
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DT ¼ RðYÞDF�HðYÞDh � PðYÞDCpðYÞ ð52Þ
where T is the first Piola–Kirchhoff stress tensor, R is the 4th order instantaneous mechanical tangent

tensor, H is the instantaneous 2nd order thermal stress tangent tensor, h is the temperature in the unit cell,

and P is the inelastic instantaneous tangent tensor.

The form of the Lagrangian equilibrium equations in the repeating unit cell are given, in the absence of

body forces, by (Malvern, 1969):

oTij
oYi

¼ 0 j ¼ 1; 2; 3 ð53Þ

In order to establish the equilibrium equations in the framework of the present homogenization procedure,

let us substitute (47) into (52) and differentiate the result with respect to the microvariable coordinates Yi of
the repeating unit cell. This yields

o

oYi
RijklðYÞ½DF klðXÞ
n

þ DeFFklðX;YÞ	 � HijðYÞDh � PijklðYÞDðCPÞklðYÞ
o
¼ 0 ð54Þ

Let us define

DT 0
ij ¼ RijklðYÞDF klðXÞ � HijðYÞDh ð55Þ

and

DeTTij ¼ RijklðYÞDeFFklðX;YÞ � PijklðYÞDðCPÞklðYÞ ¼ 0 ð56Þ

with the latter being the fluctuating stress increments.

The use of these definitions in Eq. (54) implies that

o

oYi
DeTTij þ

o

oYi
DT 0

ij ¼ 0 ð57Þ

Eqs. (57) are the strong form of the Lagrangian equilibrium equations of the homogenization theory. It is

readily seen that the first terms in (57) involve the unknown fluctuating periodic displacement increments

D~uui while the second terms in these equations produce pseudo-body forces. It should be noted that, since the

dependence of T 0
ij on Y is due to the terms RijklðYÞ and HijðYÞ (see Eq. (55)), the derivatives ðo=oYiÞ DT 0

ij (i.e.,
the pseudo-body forces) are zero within any phase of the repeating unit cell except at the boundaries be-

tween two different phases (where different values of the tangent tensors exist) at which it becomes nonzero.

For imposed values of the average deformation gradient increments DF and temperature increment Dh,
the unknown fluctuating displacement increments are governed by Eq. (57) subject to periodic boundary

conditions that are prescribed at the boundaries of the repeating unit cell.

Referring to Fig. 1(b), the periodic boundary conditions are expressed by the requirement that the

displacements and tractions should be equal on opposite sides of the repeating unit cell. Thus at the top and

bottom surfaces, right and left surfaces, and front and rear surfaces of the repeating unit cell the dis-
placement and traction increments should be identical:

D~uuijbottom ¼ D~uuijtop
DT1jjbottom ¼ DT1jjtop

ð58Þ

D~uuijleft ¼ D~uuijright
DT2jjleft ¼ DT2jjright

ð59Þ
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D~uuijfront ¼ D~uuijrear
DT3jjfront ¼ DT3jjrear

ð60Þ

where DTij (i; j ¼ 1; 2; 3) denotes the increments of the total Piola–Kirchhoff stress components given by

DTij ¼ DT 0
ij þ DeTTij ð61Þ

In addition to these periodic boundary conditions one needs to impose continuity of displacements and
tractions at the internal interfaces between the phases that fill the repeating unit cell.

4. The concentration tensors

Once the solution of Eq. (57), subject to the internal interfacial conditions and periodic boundary

conditions (58)–(60) has been established, one can proceed and determine the concentration tensors as-

sociated with the defined repeating unit cell. These tensors express the local increment of the deformation

gradient in the cell in terms of the increment of the global applied external deformation gradient and

temperature, as well as in terms of the inelastic deformation increment. To this end, let us express the

induced local deformation gradient increment DeFF in terms of the applied deformation gradient increment
DF, temperature increment Dh and inelastic deformation increment DFP as follows:

DeFF ¼ eAAðYÞDFþ aðYÞDh þ DFPðYÞ ð62Þ

In this equation, eAAðYÞ and aðYÞ represent the mechanical and thermal concentration tensors, respectively,

while DFP is the contribution of the increments of the inelastic effects to the local deformation gradient in

the repeating unit cell.

As will be shown in the next section, the determination of these tensors by the micromechanical model

establishes the instantaneous effective stiffness tangent tensor of the composite, which relates the increment

of the average stress in the composite to the increment of applied deformation gradient. It also establishes
the instantaneous effective thermal stress tangent tensor which relates the increment of the average stress in

the composite to the increment of applied temperature. Finally, it provides the dependence of the increment

of the average stress in the composite in terms of the global inelastic stress increment.

By using Eq. (47) in (62), we readily obtain that

DF ¼ DFþ eAAðYÞDFþ aðYÞDh þ DFPðYÞ ¼ ½I4 þ eAAðYÞ	DFþ aðYÞDh þ DFPðYÞ
� AðYÞDFþ aðYÞDh þ DFPðYÞ ð63Þ

where I4 is the 4th order identity tensor.

To obtain the current concentration tensors AðYÞ, aðYÞ and the inelastic increment DFPðYÞ a series of

problems must be solved as follows.
Solve Eqs. (57) in conjunction with the internal interfacial and periodic boundary conditions with

DF 11 ¼ 1 and all other components of DF being equal to zero, Dh ¼ 0 and DFP ¼ 0. The solution of these

coupled differential equations readily provides Aij11 for i; j ¼ 1; 2; 3. This procedure is repeated with

DF 22 ¼ 1 and all other components of DF equal to zero, Dh ¼ 0 and DFP ¼ 0 which provides Aij22, etc. . . In
this way the current mechanical concentration tensor AðYÞ can be established.

The current thermal concentration tensor aðYÞ is determined by applying a temperature increment

Dh ¼ 1 in the absence of external mechanical loading and inelastic effects.

Finally, in the absence of any external mechanical or thermal loadings one can use the micromechanical
analysis in the presence of the current inelastic increments for the determination of the current DFPðYÞ.
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5. The overall constitutive law of the multiphase material

Once the current concentration tensors AðYÞ and aðYÞ have been determined together with current in-

elastic increment DFPðYÞ it is possible to compute the instantaneous effective stiffness tangent tensor R
 of
the multiphase composite, the instantaneous effective thermal stress tangent tensor H
, and the global

inelastic increment DTP. These quantities provide the current overall constitutive law of the multiphase

inelastic composite. To this end, substitution of DF given by (63), in Eq. (52) yields

DT ¼ RðYÞ½AðYÞDFþ aðYÞDh þ DFPðYÞ	 �HðYÞDh � PðYÞDCP ð64Þ

Taking the average of both sides of Eq. (64) over the repeating unit cell yields the increment of average

stress DT in the composite in terms of the increment of average deformation gradient via the current ef-

fective stiffness tangent tensor R
, the current effective thermal stress tangent tensor H
, and the current
global inelastic stress increment DTP:

DT ¼ R
DF�H
Dh � DTP ð65Þ

where

R
 ¼ 1

VY

Z
RðYÞAðYÞdVY ð66Þ

H
 ¼ � 1

VY

Z
½RðYÞaðYÞ �HðYÞ	dVY ð67Þ

and

DTP ¼ � 1

VY

Z
½RðYÞDFPðYÞ � PðYÞDCP	dVY ð68Þ

6. Method of solution

In this section we present a solution methodology for Eq. (57) for the finite deformation of composites

that consist of some inelastic phases. In this case the repeating unit cell extends initially over 06 Y1 6D,
06 Y2 6H and 06 Y3 6 L in terms of the local material coordinates ðY1; Y2; Y3Þ as stated above. The mi-

crostructure of the composite on the local level is modeled by discretizing the repeating unit cell into Np, Nq

and Nr generic cells in the intervals 06 Y1 6D, 06 Y2 6H and 06 Y3 6 L, respectively, where a typical
generic cell is shown see Fig. 1(c). As is illustrated in Fig. 1(c), a generic ðp; q; rÞ cell consists of eight subcells
designated by the triplet ðabcÞ where each index takes the values 1 or 2, which indicate the relative position

of the given subcell with respect to the local coordinates. The indices p, q and r, whose ranges are

p ¼ 1; 2; . . . ;Np; q ¼ 1; 2; . . . ;Nq and r ¼ 1; 2; . . . ;Nr, identify the generic cell in the Yi space. The dimensions

of the generic cell along the Y1, Y2 and Y3 axes are dðpÞ
1 , dðpÞ

2 , hðqÞ1 , hðqÞ2 and lðrÞ1 , lðrÞ2 , such that

D ¼
XNp

p¼1

dðpÞ
1



þ dðpÞ

2

�

H ¼
XNq

q¼1

hðqÞ1



þ hðqÞ2

�
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L ¼
XNr

r¼1

lðrÞ1



þ lðrÞ2

�
An approximate solution for the displacement increments is constructed based on volumetric averaging

of the field equations together with the imposition of the periodic boundary conditions and continuity

conditions in an average sense between the subcells used to characterize the materials� microstructure. This

is accomplished by approximating the fluctuating displacement increments in each subcell using a quadratic

expansion in terms of local coordinates Y
ðaÞ
, Y

ðbÞ
, Y

ðcÞ
centered at the subcell�s midpoint. A higher-order

representation of the fluctuating displacement is necessary in order to capture the local effects created by the

field gradients and the microstructure of the composite. This is in sharp contrast with the so called gen-

eralized method of cells where the displacement increment expansion was linear (see Aboudi and Arnold,
2000).

With the above objective in mind, the fluctuating field in the subcell ðabcÞ of the ðp; q; rÞth generic cell is

approximated by a second-order expansion in the local coordinates system. Consequently, according to

Eq. (51) the displacement increments in the subcell can be represented in the form (the generic cell label

ðp; q; rÞ has been omitted)

Duða b cÞ ¼ DFXþ DWða b cÞ
ð0 0 0Þ þ Y

ðaÞ
1 DWða b cÞ

ð1 0 0Þ þ Y
ðbÞ
2 DWða b cÞ

ð0 1 0Þ þ Y
ðcÞ
3 DWða b cÞ

ð0 0 1Þ

þ 1

2
3Y

ðaÞ2
1

�
� dðpÞ2

a

4

�
DWða b cÞ

ð2 0 0Þ þ
1

2
3Y

ðbÞ2
2

 
�
hðqÞ2b

4

!
DWða b cÞ

ð0 2 0Þ þ
1

2
3Y

ðcÞ2
3

 
�
lðrÞ2c

4

!
DWða b cÞ

ð0 0 2Þ

ð69Þ

where DWða b cÞ
ð0 0 0Þ, which are the increments of the fluctuating volume-averaged displacements, and the higher-

order terms DWða b cÞ
ðl m nÞ must be determined, as shown below, from the governing equations (51) as well as the

periodic boundary conditions (58)–(60) that the fluctuating mechanical field must fulfill, in conjunction
with the interfacial continuity conditions between subcells.

The increments of the deformation gradient are given by (47), in conjunction with Eqs. (48) and (49),

namely

DF ða b cÞ
ij ¼ DF ij þ oiDu

ða b cÞ
j ð70Þ

where o1 ¼ o=oY
ðaÞ
1 , o2 ¼ o=oY

ðbÞ
2 and o3 ¼ o=oY

ðcÞ
3 .

In the perfectly elastic case, the quadratic displacement expansion, Eq. (69), produce linear variations in

the deformation gradients and stresses at each point within the subcell. In the presence of inelastic effects,

however, a linear deformation gradients generated by Eq. (69) does not imply the linearity of the stress field

due to the path-dependent deformation. Thus the displacement field microvariables must depend implicitly

on the inelastic stress distributions, giving rise to a higher-order stress field than the linear deformation

gradient field generated from the assumed displacement field representation. In the presence of inelastic

effects, this higher-order stress field is represented by a higher-order Legendre polynomial expansion in the

local coordinates. Therefore, the deformation gradient field generated from the assumed displacement field,
and the resulting mechanical field, must also be expressed in terms of Legendre polynomials:

DFða b cÞ ¼
X1
l¼0

X1
m¼0

X1
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2lÞð1þ 2mÞð1þ 2nÞ

p
D/

ða b cÞ
ðl;m;nÞPlðf

ðaÞ
1 ÞPmðfðbÞ2 ÞPnðfðcÞ3 Þ ð71Þ

DTða b cÞ ¼
X1
l¼0

X1
m¼0

X1
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2lÞð1þ 2mÞð1þ 2nÞ

p
Ds

ða b cÞ
ðl;m;nÞPlðf

ðaÞ
1 ÞPmðfðbÞ2 ÞPnðfðcÞ3 Þ ð72Þ

J. Aboudi / International Journal of Solids and Structures 40 (2003) 2793–2817 2805



where the nondimensional variables fð�Þi , defined in the interval �16 fð�Þi 6 1, are given in terms of the local

subcell coordinates as fðaÞ1 ¼ Y
ðaÞ
1 =ðdðpÞ

a =2Þ, fðbÞ2 ¼ Y
ðbÞ
2 =ðhðqÞb =2Þ, and fðcÞ3 ¼ Y

ðcÞ
3 =ðlðrÞc =2Þ. For the given dis-

placement field representation, Eq. (69), the upper limits on the summations in Eq. (71) become 1. The

upper limits on the summations in Eq. (72) are chosen so that an accurate representation of the stress field

(which depends on the amount of the inelastic flow) is obtained within each subcell. The coefficients

D/
ða b cÞ
ðl;m;nÞ, Ds

ða b cÞ
ðl;m;nÞ in the above expansions are determined as described below.

The increments of the deformation gradient coefficients D/
ða b cÞ
ðl;m;nÞ in the subcell of cell ðp; q; rÞ are explicitly

determined in terms of the displacement field (69), using the orthogonal properties of Legendre polyno-
mials. They are given as follows (omitting ðp; q; rÞ):

D/
ða b cÞ
ð0;0;0Þ ¼ DFþ

DW ða b cÞ
1ð1 0 0Þ DW ða b cÞ

1ð0 1 0Þ DW ða b cÞ
1ð0 0 1Þ

DW ða b cÞ
2ð1 0 0Þ DW ða b cÞ

2ð0 1 0Þ DW ða b cÞ
2ð0 0 1Þ

DW ða b cÞ
3ð1 0 0Þ DW ða b cÞ

3ð0 1 0Þ DW ða b cÞ
3ð0 0 1Þ

26664
37775 ð73Þ

D/
ða b cÞ
ð1;0;0Þ ¼

ffiffiffi
3

p
da

2

DW ða b cÞ
1ð2 0 0Þ 0 0

DW ða b cÞ
2ð2 0 0Þ 0 0

DW ða b cÞ
3ð2 0 0Þ 0 0

26664
37775 ð74Þ

D/
ða b cÞ
ð0;1;0Þ ¼

ffiffiffi
3

p
hb

2

0 DW ða b cÞ
1ð0 2 0Þ 0

0 DW ða b cÞ
2ð0 2 0Þ 0

0 DW ða b cÞ
3ð0 2 0Þ 0

26664
37775 ð75Þ

D/
ða b cÞ
ð0;0;1Þ ¼

ffiffiffi
3

p
lc

2

0 0 DW ða b cÞ
1ð0 0 2Þ

0 0 DW ða b cÞ
2ð0 0 2Þ

0 0 DW ða b cÞ
3ð0 0 2Þ

26664
37775 ð76Þ

The increments of the stress coefficients Ds
ða b cÞ
ðl;m;nÞ in the subcell of cell ðp; q; rÞ are expressed in terms of the

increments of the deformation gradient coefficients, thermal stress and the unknown inelastic stress dis-

tributions, by first substituting the Legendre polynomial representations for the deformation gradient and

stress increments into the constitutive equations, Eq. (52), and then utilizing the orthogonality of Legendre

polynomials:

Ds
ða b cÞ
ðl;m;nÞ ¼ R

ða b cÞD/
ða b cÞ
ðl;m;nÞ �H

ða b cÞDhdl0dm0d0n � Ds
ða b cÞ
P ðl;m;nÞ ð77Þ

The Ds
ða b cÞ
P ðl;m;nÞ terms represent the increments of the inelastic stress distributions calculated in the following

manner

Ds
ða b cÞ
Pðl;m;nÞ ¼ Klmn

Z 1

�1

Z 1

�1

Z 1

�1

½PDCp	ða b cÞPlðfðaÞ1 ÞPmðfðbÞ2 ÞPnðfðcÞ3 ÞdfðaÞ1 dfðbÞ2 dfðcÞ3 ð78Þ

where

Klmn ¼
1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2mþ 1Þð2nþ 1Þ

p
Note that in both Eq. (77) and (78) the cell labeling ðp; q; rÞ has been omitted.
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In the course of satisfying the governing equations in a volumetric sense, it is convenient to define the

following increments of stress quantities in the subcell ðabcÞ of generic cell ðp; q; rÞ:

Dtða b cÞ
ðl;m;nÞ

h iðp;q;rÞ
¼ 1

dðpÞ
a hðqÞb lðrÞc

Z dðpÞa =2

�dðpÞa =2

Z hðqÞ
b

=2

�hðqÞ
b

=2

Z lðrÞc =2

�lðrÞc =2

ðY ðaÞ
1 ÞlðY ðbÞ

2 ÞmðY ðcÞ
3 ÞnDTða b cÞ dY

ðaÞ
1 dY

ðbÞ
2 dY

ðcÞ
3 ð79Þ

For l ¼ m ¼ n ¼ 0, Eq. (79) provides the average stress increments in the subcell, whereas for other values

of ðl;m; nÞ higher-order values are obtained that are needed to describe the governing field equations of the

continuum. It can be verified that

Dtða b cÞ
ð0;0;0Þ ¼ Ds

ða b cÞ
ð0;0;0Þ

Dtða b cÞ
ð1;0;0Þ ¼

da

2
ffiffiffi
3

p Ds
ða b cÞ
ð1;0;0Þ

Dtða b cÞ
ð0;1;0Þ ¼

hb

2
ffiffiffi
3

p Ds
ða b cÞ
ð0;1;0Þ

Dtða b cÞ
ð0;0;1Þ ¼

lc
2
ffiffiffi
3

p Ds
ða b cÞ
ð0;0;1Þ

ð80Þ

which are the needed quantities used in the following.

Subsequently, satisfaction of the zeroth, first, and second moments of the equilibrium, Eq. (57) results in

the following 24 relations among the volume-averaged first-order field values Dtða b cÞ
ðl;m;nÞ in the different subcells

ðabcÞ of the ðp; q; rÞ generic cell, after lengthy algebraic manipulations

1

d2
a

Dtða b cÞ
1jð1;0;0Þ

"
þ 1

h2b
Dtða b cÞ

2jð0;1;0Þ þ
1

l2c
Dtða b cÞ

3jð0;0;1Þ

#ðp;q;rÞ
¼ 0 j ¼ 1; 2; 3 ð81Þ

The continuity of traction at the subcell interfaces and between adjacent generic cells, imposed in an

average sense, in the 1-direction can be shown to be ensured by the following relations�
� 12

d1
Dtð1 b cÞ

1jð1;0;0Þ þ Dtð2 b cÞ
1jð0;0;0Þ �

6

d2
Dtð2bcÞ

1jð1;0;0Þ

�ðp;q;rÞ
� Dtð2 b cÞ

1jð0;0;0Þ

�
þ 6

d2
Dtð2 b cÞ

1jð1;0;0Þ

�ðp�1;q;rÞ

¼ 0 ð82Þ

and �
� Dtð1 b cÞ

1jð0;0;0Þ þ
1

2
Dtð2 b cÞ

1jð0;0;0Þ �
3

d2
Dtð2 b cÞ

1jð1;0;0Þ

�ðp;q;rÞ
þ 1

2
Dtð2 b cÞ

1jð0;0;0Þ

�
þ 6

d2
Dtð2 b cÞ

1jð1;0;0Þ

�ðp�1;q;rÞ

¼ 0 ð83Þ

The continuity of traction in the 2- and 3-directions generate similar conditions which need not be given

here. Eqs. (82) and (83) and the corresponding ones in the 2- and 3-direction provide altogether 72 additional

relations among the zeroth-order, first-order and second-order field quantities in the generic cell ðp; q; rÞ.
The additional 72 relations necessary to determine the unknown coefficients in the displacement ex-

pansion are obtained by imposing the displacement continuity conditions on an average basis at each

subcell and cell interface. In the 1-direction this produces,

DW ð1 b cÞ
ið0 0 0Þ

�
þ 1

2
d1DW

ð1 b cÞ
ið1 0 0Þ þ

1

4
d2
1DW

ð1 b cÞ
ið2 0 0Þ

�ðp;q;rÞ
¼ DW ð2 b cÞ

ið0 0 0Þ

�
� 1

2
d2DW

ð2 b cÞ
ið1 0 0Þ þ

1

4
d2
2DW

ð2 b cÞ
ið2 0 0Þ

�ðp;q;rÞ
ð84Þ

DW ð2 b cÞ
ið0 0 0Þ

�
þ 1

2
d2DW

ð2 b cÞ
ið1 0 0Þ þ

1

4
d2
2DW

ð2 b cÞ
ið2 0 0Þ

�ðp;q;rÞ
¼ DW ð1 b cÞ

ið0 0 0Þ

�
� 1

2
d1DW

ð1 b cÞ
ið1 0 0Þ þ

1

4
d2
1DW

ð1 b cÞ
ið2 0 0Þ

�ðpþ1;q;rÞ

ð85Þ

with i ¼ 1; 2; 3. Similar equations can be established in the 2- and 3-directions.
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Thus, the equilibrium equations together with the continuity of tractions and displacements form 168

equations in the 168 unknown increments of field variables in any interior generic cell ðp; q; rÞ,
p ¼ 2; . . . ;Np � 1, q ¼ 2; . . . ;Nq � 1 and r ¼ 2; . . . ;Nr � 1. For the boundary cells p ¼ 1;Np, q ¼ 1;Nq and

r ¼ 1;Nr a different treatment must be applied.
For generic cell ð1; q; rÞ, for example, the above relations are operative, except Eqs. (82) and (83), which

follow from the continuity of tractions between a given cell and the preceding one. These equations must be

replaced by the conditions of continuity of traction at the interior interfaces of cell ð1; q; rÞ (imposed on the

average sense) that can be shown to provide

6

d1
Dtð1 b cÞ

1jð1;0;0Þ

�
þ Dtð1 b cÞ

1jð0;0;0Þ þ
6

d2
Dtð2 b cÞ

1jð1;0;0Þ � Dtð2 b cÞ
1jð0;0;0Þ

�ð1;q;rÞ
¼ 0; j ¼ 1; 2; 3 ð86Þ

and by the conditions that the fluctuating displacements are periodic. For example the periodicity of the

displacement in the 1-direction provides (see the first relation in Eq. (58))

DW ð1 b cÞ
ið0 0 0Þ

�
� 1

2
d1DW

ð1 b cÞ
ið1 0 0Þ þ

1

4
d2
1DW

ð1 b cÞ
ið2 0 0Þ

�ð1;q;rÞ
¼ DW ð2 b cÞ

ið0 0 0Þ

�
þ 1

2
d2DW

ð2 b cÞ
ið1 0 0Þ þ

1

4
d2
2DW

ð2 b cÞ
ið2 0 0Þ

�ðNp ;q;rÞ

ð87Þ

where i ¼ 1, 2, and 3. Similar treatments apply for cell ðp; 1; rÞ and ðp; q; 1Þ.
For the boundary generic cell ðNp; q; rÞ, for example, the previously derived governing equations are

operative except for the relations given by Eq. (85), which are obviously not applicable. These are replaced

by the conditions that the tractions are periodic. For example the periodicity of tractions provide the

following equations to be used in cell ðNp; q; rÞ (see the 2nd relation in Eq. (58)):

6

d1
Dtð1 b cÞ

1jð1;0;0Þ

�
� Dtð1 b cÞ

1jð0;0;0Þ

�ð1;q;rÞ
þ 6

d2
Dtð2 b cÞ

1jð1;0;0Þ

�
þ Dtð2 b cÞ

1jð0;0;0Þ

�ðNp ;q;rÞ

¼ 0 ð88Þ

Similar treatments hold for boundary cells ðp;Nq; rÞ and ðp; q;NrÞ.
Consequently, the governing equations for the interior and boundary cells form a linear system of 168

NpNqNr algebraic equations in the unknown displacement coefficient increments that appear in the qua-

dratic expansion (69). The final form of this system of equations can be symbolically represented by

KDU ¼ Df þ Dg ð89Þ

where the structural stiffness matrix K contains information on the geometry and the properties of the

materials within the individual subcells ðabcÞ within the generic cells comprising the repeating unit cell of

multiphase periodic composite. The field vector DU contains the unknown expansion coefficients in each

subcell, i.e.,

DU ¼ DUð1 1 1Þ
111 ; . . . ;DUð2 2 2Þ

NpNqNr

h i
ð90Þ

where in subcell ðabcÞ of generic cell ðp; q; rÞ these coefficients are

Uða b cÞ
pqr ¼ ½Wð0 0 0Þ;Wð1 0 0Þ;Wð0 1 0Þ;Wð0 0 1Þ;Wð2 0 0Þ;Wð0 2 0Þ;Wð0 0 2Þ	ða b cÞ

pqr

The thermomechanical force vector Df contains information on the increment of applied average defor-

mation gradient DF and the applied temperature increment Dh. The vector Dg appearing on the right-
hand side of Eq. (89) contains the inelastic effects given in terms of the integrals of represented by the

coefficients Ds
ða b cÞ
Pðl;m;nÞ, see Eq. (78). The solution that establishes the response of the composite is obtained

incrementally in time by solving Eq. (89) for the increments of microvariables at a given time t, from which
the microvariables themselves can be readily determined.
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7. Global constitutive relations

Once the solution DU for a given set of deformation gradient and temperature increments has been

established for a given type of loading, we can determine, in particular, the average deformation gradient
increments in all subcells via the corresponding concentration tensors and inelastic deformation increment,

see Eq. (63). Thus from the first relation in (80), the increment of average stress ½Dtða b cÞ
ð0;0;0Þ	

ðp;q;rÞ
in subcell

ðabcÞ of the generic cell ðp; q; rÞ is given by

Dtða b cÞ
ð0;0;0Þ

h iðp;q;rÞ
¼ Rða b cÞD/

ða b cÞ
ð0;0;0Þ

h
�Hða b cÞDh � Ds

ða b cÞ
Pð0;0;0Þ

iðp;q;rÞ
¼ Rða b cÞ Aða b cÞDF


h
þ aða b cÞDh þ DFða b cÞ

P

�
�Hða b cÞDh � Ds

ða b cÞ
P ð0;0;0Þ

iðp;q;rÞ
ð91Þ

The increment of the average stress in the multiphase periodic composite is determined from

DT ¼ 1

DHL

XNp

p¼1

XNq

q¼1

XNr

r¼1

X2
a;b;c¼1

dðpÞ
a hðqÞb lðrÞc Dtða b cÞ

ð0;0;0Þ

h iðp;q;rÞ
ð92Þ

Consequently, Eq. (91) and (92) establish the effective constitutive law of the multiphase composite in the
form

DT ¼ R
DF�H
Dh � DTP ð93Þ
where R
 and H
 are the instantaneous effective stiffness and effective thermal stress tangent tensors of the

composite which are given by

R
 ¼ 1

DHL

XNp

p¼1

XNq

q¼1

XNr

r¼1

X2
a;b;c¼1

dðpÞ
a hðqÞb lðrÞc Rða b cÞAða b cÞ� �ðp;q;rÞ ð94Þ

H
 ¼ � 1

DHL

XNp

p¼1

XNq

q¼1

XNr

r¼1

X2
a;b;c¼1

dðpÞ
a hðqÞb lðrÞc Rða b cÞaða b cÞ�

�Hða b cÞ�ðp;q;rÞ ð95Þ

and the global inelastic stress tensor is determined from

DTP ¼ � 1

DHL

XNp

p¼1

XNq

q¼1

XNr

r¼1

X2
a;b;c¼1

dðpÞ
a hðqÞb lðrÞc Rða b cÞDFða b cÞ

P

h
� Ds

ða b cÞ
P ð0;0;0Þ

iðp;q;rÞ
ð96Þ

8. Computational procedure

Based on the developed micromechanical analysis, the following computational strategy is employed to

determine the elastic–viscoplastic response of the multiphase material at a give time increment.

1. With the current local deformation gradients Fða b cÞ and plastic deformations C
ða b cÞ
P in all subcells, com-

pute the instantaneous mechanical tangent tensors Rða b cÞ, Eq. (30), the thermal stress tangent tensors

Hða b cÞ, Eq. (32), and the current inelastic tangent tensor Pða b cÞ, Eq. (33).

2. The mechanical concentration factors Aða b cÞ can be determined by employing the described microme-

chanical procedure by imposing DF with Dh ¼ 0 and in the absence of any inelastic effects, see Eq. (63).

3. The thermal concentration factors aða b cÞ can be determined by employing the micromechanical proce-

dure by imposing Dh with DF ¼ 0 and in the absence of any inelastic effects, see Eq. (63).
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4. Once the concentration factors Aða b cÞ and aða b cÞ have been determined, one can readily compute the cur-

rent effective stiffness tangent tensor R
, Eq. (94), and the current effective thermal stress tangent tensor

H
, Eq. (95).

5. For the specific external thermomechanical loading that is imposed on the multiphase material and with
the present values of Ds

ða b cÞ
P ðl;m;nÞ that have been predicted from the previous increment, one can apply the

derived micromechanical procedure to determine the microvariables increments by solving Eq. (89).

These readily provide the global stress increment DT, see Eq. (92). Hence the stress tensor T can be com-

puted from

T ¼ Tjprevious þ DT

Thus the overall response of the composite to the specific applied loading F and temperature h has been

determined in the present increment.

6. Use the evolution equations for the plastic deformation CP (Eq. (13)), the evolution equation for isotro-

pic hardening j (Eq. (18)), and the evolution equation for the directional hardening b (Eq. (20)) to de-

termine the inelastic stress coefficients Ds
ða b cÞ
Pðl;m;nÞ (Eq. (78)) that are needed in the next time step. In

addition, compute the rate of dissipation _ddða b cÞ (Eq. (12)) and verify that it is not negative. Otherwise

the computational procedure should be stopped.

7. With DF ¼ 0, Dh ¼ 0 and with the current predicted values of Ds
ða b cÞ
Pðl;m;nÞ, compute from Eq. (63) DFPðYÞ

by employing the micromechanical procedure.

8. Use Eq. (96) to determine DTP from which the global inelastic stress tensor can computed according to:

TP ¼ TPjprevious þ DTP

9. Compute the current local deformation gradient from

Fða b cÞ ¼ Fða b cÞjprevious þ DFða b cÞ

This procedure is repeated in the next increment.

Obviously, this stepwise procedure is explicit of the Eulerian type. The numerical examples that are

reported in the following section are given for illustrative purposes in order to show the behavior of the

finite deformation of an elastic–viscoplastic composite, based on the established micromechanical analysis,

under various types of loading. In practical applications however, a type of Newtonian iterative procedure,

in conjunction with an efficient integration procedure of the evolution equations, would be necessary. For a

recent publication that discusses the integration of viscoplasticity and creep equations see Ple�ssek and

Korou�ss (2002).

9. Applications

The developed finite deformation micromechanical analysis is applied herein to investigate the response

of a thermoelastic–viscoplastic matrix, reinforced either by continuous fibers or by inclusions.

The fibers and the inclusions are assumed to be a nonlinearly elastic compressible hyperelastic material
whose strain energy function W is given by Murnaghan�s representation (Murnaghan, 1967):

W ¼ k þ 2l
2

K2
1 � 2lK2 þ

lþ 2m
3

K3
1 � 2mK1K2 þ nK3 ð97Þ

where K1, K2, K3 are the invariants of the large Cauchy–Green strain tensor E (defined in Eq. (23)), k, l are

the second order elastic moduli, and l, m, n are the third order moduli. For SiC fibers and inclusions, whose
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measured second and third order elastic moduli have been reported by Chen and Jiang (1993), these pa-

rameters are given in Table 1. For illustrative purposes, Eq. (97) is employed in the following over a wide

range of deformation so that the strain failure of the SiC fibers which is about 1–1.5% is ignored.

The incremental constitutive equation that results from Eq. (97) is given by

DT ¼ RDF ð98Þ

where the instantaneous elastic tangent stiffness tensor R of the material is computed using the relations

given by Eq. (30) and (31).

The material parameters of the thermoelastic–viscoplastic matrix, whose constitutive behavior has been

described in Section 2, are given in Table 2. For infinitesimal deformations these parameters correspond to

an aluminum alloy that has been characterize by Rowley and Thornton (1996). It should be noted that the
effect of thermal recovery of hardening is neglected.

9.1. Continuous reinforced composites

Here it is assumed that the continuous fibers are oriented in the 1-direction. Fig. 2 shows the response to

uniaxial stress loading of the individual (noninteracting) SiC fibers and the matrix in which the inelastic
effects have been neglected. By neglecting the inelastic effects, the matrix behaves as a nonlinearly elastic

material. This nonlinear response of the matrix is well observed in Fig. 2, but the SiC fibers exhibit a linear

response in the considered deformation region shown in the figure.

Fig. 3 shows the isothermal elastic–viscoplastic response of the monolithic matrix that is subjected to two

rates of uniaxial stress loading: 0.01 and 1 s�1. A comparison with its elastic behavior shown in Fig. 2 shows

that the effects of the plastic flow on the response are significant. The decrease of the stress with increasing

amount of loading is similar to that observed by Rubin (1989).

Consider now a composite that is subjected to uniaxial stress loading applied in the axial direction
(namely, in the fiber direction) at a rate of 1 s�1. The response of the composite is shown in Fig. 4 for two

Table 1

Material constants for SiC (Chen and Jiang, 1993)

k (GPa) l (GPa) l (GPa) m (GPa) n (GPa)

97.66 188 )82.1 )310 )683

Table 2

Material properties of the aluminum alloy (Rowley and Thornton, 1996)

Property Value

K 81.76 GPa

l 31.35 GPa

a 22.5� 10�6 K�1

D0 10 000 s�1

n 1.95

m1 0.532 MPa�1

m2 3.95 MPa�1

Z0 828 MPa

Z1 937 MPa

Z3 275 MPa

A1 0

A2 0
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values of volume fraction vf ¼ 0:25 and 0.4. As is expected, higher stress values are obtained with increasing
fiber content. Fig. 5, on the other hand shows the response of the composite when it is subjected to uniaxial

stress loading in the transverse direction (e.g. in the 2-direction). As expected, lower stress values are ob-

tained.

Fig. 6 shows the response of the unreinforced elastic–viscoplastic matrix to simple shear loading at two

rates: 0.01 and 1 s�1. Here the decrease of the shear stress with increasing loading is seen to be less pro-

nounced as compared to the uniaxial stress loading case of Fig. 3. This behavior is consistent with the

results of Rubin (1987).

Fig. 7 exhibits the composite�s behavior when it is subjected to a simple transverse shear loading F 23 at a
rate of 1 s�1 for two values of fiber volume fraction vf . Since the first Piola–Kirchhoff stress tensor T is not

symmetric, the figure shows the average of the transverse shear components ðT 23 þ T 32Þ=2. Similarly, Fig. 8

Fig. 2. The response of the individual SiC and matrix subjected to uniaxial stress loading. The viscoplastic effects of the matrix have

been neglected.

Fig. 3. The response of the elastic–viscoplastic matrix subjected to uniaxial stress loading at two rates.
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exhibit the composite�s behavior when it is subjected to a simple axial shear loading F 12 at a rate of 1 s�1 for
two values of fiber volume fraction vf . Here, higher stress values are obtained in comparison with the

transverse shear loading due to the fiber interaction.

So far results were generated under isothermal loading conditions. Let us present the response of the

composite which is subjected to thermal loading conditions. Since the finite thermoelastic constitutive

equations of the SiC material are not known, we assume in the following that the SiC fibers are linearly

elastic material whose Lame� constants k and l are given in Table 1, and whose coefficient of thermal

expansion has the value 4� 10�6 K�1. Figs. 9 and 10 exhibit the composite�s response to a thermal loading

that starts from the reference temperature h0 ¼ 0 �C and rises up to temperature h ¼ 600 �C, after which it

Fig. 4. The response of a composite with continuous fibers subjected to uniaxial stress loading in the axial direction for two values of

fiber volume fraction.

Fig. 5. The response of a composite with continuous fibers subjected to uniaxial stress loading in the transverse direction for two values

of fiber volume fraction.
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drops back to 0 �C. The resulting axial F 11 and transverse F 22 ¼ F 33 deformations are shown. Both figures
clearly display the effect of viscoplasticity which can be detected by comparison with the corresponding

dashed curves that show the induced deformations in the composite due to the same temperature cycle but

in the absence of any viscoplastic effects in the matrix material. It should be noted that in the range of

06 h6 600 the induced deformation is still in the small strain domain. A much higher temperature is

needed to get finite strain but for the present matrix characterization this is not realistic.

9.2. Particulate composites

Consider a particulate composite in which SiC inclusions that are characterized by Table 1, are rein-
forcing an elastic–viscoplastic matrix whose properties are given by Table 2. Let the composite be subjected

Fig. 6. The response of the elastic–viscoplastic matrix subjected to simple shear loading at two rates.

Fig. 7. The response of a composite with continuous fibers subjected to a simple transverse shear loading for two values of fiber volume

fraction.
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to a hydrostatic loading: F 11 ¼ F 22 ¼ F 33. The response of the composite to this type of loading is shown in
Fig. 11 for inclusion�s volume fractions: vf ¼ 0:05, 0.25, 0.4. The computations have been stopped whenever

the rate of dissipation becomes negative. Also shown in the figure is the response to hydrostatic loading

of the nonlinearly elastic matrix (in which the viscoplastic effects have been neglected). It should be noted

that the three response curves of the composite shown in the figure are rather similar to the composite�s
response obtained when the inelastic effects of the matrix are neglected. However, although the overall

responses of the particulate composites in the presence and absence of viscoplastic effects of the matrix are

similar, the inelastic mechanism of the matrix generates high local plastic flow in the matrix regions which

at certain level of loading produces negative dissipation.

Fig. 8. The response of a composite with continuous fibers subjected to a simple axial shear loading for two values of fiber volume

fraction.

Fig. 9. Axial and transverse deformations due to a temperature cycle applied on a fibrous composite with fiber volume fraction

vf ¼ 0:25. The dashed lines exhibit the deformations when the viscoplasticity effects of the matrix have been neglected.
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10. Conclusions

By incorporating a set of constitutive relations, that represents the finite deformation of isotropic elastic–

viscoplastic materials with isotropic and directional hardening, into a micromechanical model which is
capable of simulating finite deformation behavior, a global incremental constitutive anisothermal law for

multiphase elastic–viscoplastic composites has been established. The composite�s constitutive equations

involve the instantaneous effective stiffness tangent tensor, the instantaneous effective thermal stress tangent

tensor, and the inelastic global stress tensor, all of which are given in a closed-form manner. This con-

stitutive law can be incorporated into an appropriate structural analysis in order to analyze the response of

inelastic composite structures which are subjected to finite deformations.

Fig. 10. Axial and transverse deformations due to a temperature cycle applied on a fibrous composite with fiber volume fraction

vf ¼ 0:4. The dashed lines exhibit the deformations when the viscoplasticity effects of the matrix have been neglected.

Fig. 11. The response of a particulate composite to hydrostatic loading for three values of inclusion volume ratio. Also shown is the

response of the nonlinearly elastic matrix in the absence of viscoplastic effects to a hydrostatic loading.
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